误差线用于显示数据的不确定程度,误差一般使用标准差(Standard Deviation)或标准误差(Standard Error)。

标准差(SD):是方差的算术平方根。如果是总体标准差,那么用σ表示,如果是样本标准差,那么用s表示。标准差反映数据集的离散程度,标准差越小,就说明数据越集中在其平均值附近。公式:(总体),(样本)
 
 
标准误差(SE):是样本分布的标准差。如果是样本平均数分布的标准差,那么就称为SEM(standard error of the mean),就是说每次从总体中抽取n个样本,抽取很多次后,每次抽样的平均值( )就形成了一个数据分布,这个数据分布有自己的平均值和标准差。抽样的平均值分布的平均数应该接近总体平均数( μ)。标准误差反映样本(sample)对于总体(population)的差异性,每次抽样的样本数越多,标准误差就越小。公式:
 

下面利用Nathan Yau所著的《鲜活的数据:数据可视化指南》一书中的数据,学习画图。

数据地址:http://datasets.flowingdata.com/crimeRatesByState2005.csv

以下是这个数据文件的前5行:

           state  murder  forcible_rape  robbery  aggravated_assault  \
0 United States 5.6 31.7 140.7 291.1
1 Alabama 8.2 34.3 141.4 247.8
2 Alaska 4.8 81.1 80.9 465.1
3 Arizona 7.5 33.8 144.4 327.4
4 Arkansas 6.7 42.9 91.1 386.8 burglary larceny_theft motor_vehicle_theft population
0 726.7 2286.3 416.7 295753151
1 953.8 2650.0 288.3 4545049
2 622.5 2599.1 391.0 669488
3 948.4 2965.2 924.4 5974834
4 1084.6 2711.2 262.1 2776221

这是美国各州各种犯罪行为的发生率(每10万人口)。

让我们画一个图,把全美各犯罪率的平均数,标准差展现出来。

误差线: ax.errorbar(x,y,yerr=error size in y axis,xerr=error size in x axis)

代码如下:

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
crime=pd.read_csv(r"http://datasets.flowingdata.com/crimeRatesByState2005.csv")
fig,ax=plt.subplots(figsize=(8,4)) col=crime.columns.astype(str) #提取列名,将来做x轴刻度标签
crime=crime[1:] #把第一行US的数据去除
data=crime.loc[:,"murder":"motor_vehicle_theft"] #提取数据部分,以便将来进行计算 crime.loc["mean"]=data.apply(np.mean) #增加一行,为数据每列的均值,apply函数用于数据每一列
crime.loc["standard deviation"]=data.apply(np.std) #增加一行,为数据每列的标准差,apply函数用于数据每一列 #画误差线,x轴一共7项,y轴显示平均值,y轴误差为标准差
ax.errorbar(np.arange(7),crime.loc["mean","murder":"motor_vehicle_theft"],\
yerr=crime.loc["standard deviation","murder":"motor_vehicle_theft"],\
fmt="o",color="blue",ecolor='grey',elinewidth=2,capsize=4)
ax.set_xticklabels(col,rotation=45) #设置x轴刻度标签,并使其倾斜45度,不至于重叠 plt.show()

图像如下:

另外,还可以在柱形图或条形图上画误差线,分别在ax.bar命令里加上yerr参数,或在ax.barh命令里加上xerr参数即可。

Matplotlib学习---用matplotlib画误差线(errorbar)的更多相关文章

  1. Matplotlib学习---用matplotlib画箱线图(boxplot)

    箱线图通过数据的四分位数来展示数据的分布情况.例如:数据的中心位置,数据间的离散程度,是否有异常值等. 把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)分 ...

  2. Matplotlib学习---用matplotlib画直方图/密度图(histogram, density plot)

    直方图用于展示数据的分布情况,x轴是一个连续变量,y轴是该变量的频次. 下面利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://d ...

  3. Matplotlib学习---用seaborn画联合分布图(joint plot)

    有时我们不仅需要查看单个变量的分布,同时也需要查看变量之间的联系,这时就需要用到联合分布图. 这里利用Jake Vanderplas所著的<Python数据科学手册>一书中的数据,学习画图 ...

  4. Matplotlib学习---用matplotlib和sklearn画拟合线(line of best fit)

    在机器学习中,经常要用scikit-learn里面的线性回归模型来对数据进行拟合,进而找到数据的规律,从而达到预测的目的.用图像展示数据及其拟合线可以非常直观地看出拟合线与数据的匹配程度,同时也可用于 ...

  5. Matplotlib学习---用matplotlib画阶梯图(step plot)

    这里利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://datasets.flowingdata.com/us-postage.c ...

  6. Matplotlib学习---用matplotlib画面积图(area chart)

    这里利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://book.flowingdata.com/ch05/data/us-pop ...

  7. Matplotlib学习---用matplotlib画热图(heatmap)

    这里利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://datasets.flowingdata.com/ppg2008.csv ...

  8. Matplotlib学习---用matplotlib画饼图/面包圈图(pie chart, donut chart)

    我在网上随便找了一组数据,用它来学习画图.大家可以直接把下面的数据复制到excel里,然后用pandas的read_excel命令读取.或者直接在脚本里创建该数据. 饼图: ax.pie(x,labe ...

  9. Matplotlib学习---用matplotlib画折线图(line chart)

    这里利用Jake Vanderplas所著的<Python数据科学手册>一书中的数据,学习画图. 数据地址:https://raw.githubusercontent.com/jakevd ...

随机推荐

  1. SpringBoot集成Apache Shiro

    笔者因为项目转型的原因,对Apache Shiro安全框架做了一点研究工作,故想写点东西以便将来查阅.之所以选择Shiro也是看了很多人的推荐,号称功能丰富强大,而且易于使用.实践下来的确如大多数人所 ...

  2. .NET Core 2.1中的分层编译(预览)

    如果您是.NET性能的粉丝,最近有很多好消息,例如.NET Core 2.1中的性能改进和宣布.NET Core 2.1,但我们还有更多的好消息.分层编译是一项重要的新特性功能,我们可以作为预览供任何 ...

  3. ECS上配置FTP Filezilla

    又来搞华为ECS 第一,服务器安装服务端 第二,设置被动模式,把服务器的公网IP填好 第三,生成一个服务器证书,客户端连接时接受 第四,设置自定义的被动连接端口比如 9000-9050 第五,去ECS ...

  4. vue开发中regeneratorRuntime is not defined

    我的项目是用vue提供的vue-cil脚手架生成的项目,但是当我在项目中使用async/await,编译代码的的时候报了regeneratorRuntime is not defined的错,我查过资 ...

  5. C. Painting the Fence

    链接 [https://codeforces.com/contest/1132/problem/C] 题意 就是有个n长的栅栏,然后每个油漆工可以染的区域不同 给你q让你选出q-2个人使得被染色的栅栏 ...

  6. Really Big Numbers CodeForces - 817C (数学规律+二分)

    C. Really Big Numbers time limit per test 1 second memory limit per test 256 megabytes input standar ...

  7. json和ajax学习

    1.java对象和json字符串的转换 2.json对象list集合和json字符串转换 3.map对象和json转换

  8. Dubbo负载均衡与集群容错机制

    1  Dubbo简介 Dubbo是一款高性能.轻量级的开源Java RPC框架,它提供了三大核心能力:面向接口的远程方法调用,智能容错和负载均衡,以及服务自动注册和发现. 作为一个轻量级RPC框架,D ...

  9. Java向下转型的意义

    一开始学习 Java 时不重视向下转型.一直搞不清楚向下转型的意义和用途,不清楚其实就是不会,那开发的过程肯定也想不到用向下转型. 其实向上转型和向下转型都是很重要的,可能我们平时见向上转型多一点,向 ...

  10. git reset的用法

    git reset三个选项 --mix,--hard,--soft 数据 针对每个选项都是操作这个文件. [root@centos demo]# git init Initialized empty ...