X问题

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 8365    Accepted Submission(s): 3037

Problem Description
求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], …, X mod a[i] = b[i], … (0 < a[i] <= 10)。
 
Input
输入数据的第一行为一个正整数T,表示有T组测试数据。每组测试数据的第一行为两个正整数N,M (0 < N <= 1000,000,000 , 0 < M <= 10),表示X小于等于N,数组a和b中各有M个元素。接下来两行,每行各有M个正整数,分别为a和b中的元素。
 
Output
对应每一组输入,在独立一行中输出一个正整数,表示满足条件的X的个数。
 
Sample Input
3
10 3
1 2 3
0 1 2
100 7
3 4 5 6 7 8 9
1 2 3 4 5 6 7
10000 10
1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9
 
Sample Output
1
0
3
 
Author
lwg
 
Source
 
Recommend
linle
 
 crt是处理除数互质的情况
excrt是处理除数可以不互质的情况
EXCRT就是循环使用exgcd
由前两个方程求出一个解 然后再用这个解和下一个方程求解 一直到头
贴一个聚聚的代码
因为他有讲解。。。https://blog.csdn.net/a601025382s/article/details/10296577
还有一个详解edgcd的 https://www.cnblogs.com/zwfymqz/p/8425731.html
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
void gcd(int a,int b,int &d,int &x,int &y)
{//a*x+b*y=gcd(a,b)=d;(x,y)为其一组整数解
if(!b){d=a;x=;y=;}
else{ gcd(b,a%b,d,y,x);y-=x*(a/b);}
}
int main()
{
int n,m,m1,r1,m2,r2,flag=,a[],b[],T;
cin>>T;
while(T--)
{
cin>>n>>m;
int i,j,k,d,x,y,c,t;
for(i=;i<m;i++)
cin>>a[i];
for(i=;i<m;i++)
cin>>b[i];
flag=;
m1=a[];r1=b[];
for(i=;i<m;i++)
{
m2=a[i];r2=b[i];
if(flag)continue;
gcd(m1,m2,d,x,y);//d=gcd(m1,m2);x*m1+y*m2=d;
c=r2-r1;
if(c%d)//对于方程m1*x+m2*y=c,如果c不是d的倍数就无整数解
{
flag=;
continue;
}
t=m2/d;//对于方程m1x+m2y=c=r2-r1,若(x0,y0)是一组整数解,那么(x0+k*m2/d,y0-k*m1/d)也是一组整数解(k为任意整数)
//其中x0=x*c/d,y0=x*c/d;
x=(c/d*x%t+t)%t;//保证x0是正数,因为x+k*t是解,(x%t+t)%t也必定是正数解(必定存在某个k使得(x%t+t)%t=x+k*t)
r1=m1*x+r1;//新求的r1就是前i组的解,Mi=m1*x+M(i-1)=r2-m2*y(m1为前i个m的最小公倍数);对m2取余时,余数为r2;
//对以前的m取余时,Mi%m=m1*x%m+M(i-1)%m=M(i-1)%m=r
m1=m1*m2/d;
}
if(flag||n<r1)cout<<<<endl;
else
{
int ans=(n-r1)/m1+;//m1为ai的最小公倍数,凡是m1*i+r1的都是符合要求的数,其中r1最小
if(r1==)ans--;//要求是正整数
cout<<ans<<endl;
}
}
return ;
}
/*
中国剩余定理的普通情况:ai不一定相互互质
*/

excrt处理除数不互质情况

循环使用exgcd

先由前两个方程求出解  由此构建一个方程

方程的b 为求出的解

a为前两个方程a的最小公倍数

构建的方程再与下一个方程求解 依此循环

bi '= ai - 1 * x + bi - 1

a'= (ai - 1 * bi - 1) / d;

最后求出ai' 和 bi'

任何ai' * j + bi'  (j <= 0)都是符合要求的解

X问题 HDU - 1573(excrt入门题)的更多相关文章

  1. hdu 3062 2-sat入门题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3062 #include <cstdio> #include <cmath> # ...

  2. [HDU]1016 DFS入门题

    题目的意思就是在1到n的所有序列之间,找出所有相邻的数相加是素数的序列.Ps:题目是环,所以头和尾也要算哦~ 典型的dfs,然后剪枝. 这题目有意思的就是用java跑回在tle的边缘,第一次提交就tl ...

  3. hdu 3695:Computer Virus on Planet Pandora(AC自动机,入门题)

    Computer Virus on Planet Pandora Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 256000/1280 ...

  4. hdu 1465:不容易系列之一(递推入门题)

    不容易系列之一 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  5. hdu 2191 珍惜现在,感恩生活 多重背包入门题

    背包九讲下载CSDN 背包九讲内容 多重背包: hdu 2191 珍惜现在,感恩生活 多重背包入门题 使用将多重背包转化为完全背包与01背包求解: 对于w*num>= V这时就是完全背包,完全背 ...

  6. HDU 1248 寒冰王座(全然背包:入门题)

    HDU 1248 寒冰王座(全然背包:入门题) http://acm.hdu.edu.cn/showproblem.php?pid=1248 题意: 不死族的巫妖王发工资拉,死亡骑士拿到一张N元的钞票 ...

  7. HDU 1284 钱币兑换问题(全然背包:入门题)

    HDU 1284 钱币兑换问题(全然背包:入门题) http://acm.hdu.edu.cn/showproblem.php?pid=1284 题意: 在一个国家仅有1分,2分.3分硬币,将钱N ( ...

  8. hdu 1754:I Hate It(线段树,入门题,RMQ问题)

    I Hate It Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  9. hdu 1312:Red and Black(DFS搜索,入门题)

    Red and Black Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

随机推荐

  1. 微信小程序页面跳转方法总结

    微信小程序页面跳转目前有以下方法(不全面的欢迎补充): 1. 利用小程序提供的 API 跳转: // 保留当前页面,跳转到应用内的某个页面,使用wx.navigateBack可以返回到原页面.// 注 ...

  2. eclipse 常用配置

    一.内置tomcat配置 解决eclipse 内置tomcat 与本地tomcat 端口冲突 传送门:http://www.cnblogs.com/tweet/p/7568979.html 二.字体设 ...

  3. docker安装并修改Nginx镜像

    1.安装nginx镜像,命令:docker pull nginx 2.创建nginx容器,并启动,命令:docker run --name webserver -d -p 192.168.51.227 ...

  4. pycharm 报错:pycharm please specify a different SDK name

    我在给项目配虚拟环境里的解释器的时候有没有遇到过这个问题的啊,就是一个正常的项目,解释器忽然丢了,解释器是配在虚拟环境里面的,再去选择解释器就一直报这个错,给现有项目添加虚拟环境的时候也是报这个错—— ...

  5. 《梦断代码》Scott Rosenberg著(一)

    两打程序员,3年时间,4732个bug,只为打造超卓软件.  --序 在我们平时看到的大部分书籍只是讲技术和理论,但我们其实并不知道在真实的软件开发过程中,这些技术和理论究竟是被什么样的人如何去使用, ...

  6. 使用log4j记录日志

    目录 log4j的优点 导入log4j的jar包 log4j的错误级别 log4j日志的输出目的地 log4j的配置示例 log4j的全局配置讲解 控制台日志的配置讲解 日志输出文件的配置讲解 使用l ...

  7. MyEclipse配置tomcat报错 - java.lang.UnsupportedClassVersionError: org/apache/lucene/store/Directory : Unsupported major.minor version 51.0

    1 开发Servlet程序时,MyEclipse配置好tomcat与JDK之后,启动时控制台报下列错误: 1 java.lang.UnsupportedClassVersionError: org/a ...

  8. Oracle undo 表空间不可用

    由于某次不小心操作,在切换表空间时没有成功,由于把undo的配置参数 undo_management值设置为MANUAL所以在启动数据库时没有报任何错误,但是给表插入数据时报错了,回滚段不可用的错误. ...

  9. [新三板摘牌]国资企业济南华光光电去年终止拟IPO今年摘牌新三板

    国资企业济南华光光电去年终止拟IPO今年摘牌新三板 http://blog.sina.com.cn/s/blog_e32cfa770102ycku.html http://stock.qlmoney. ...

  10. Oracle pivot行转列函数案例

    with temp as( select '湖北省' province,'武汉市' city,'第一' ranking from dual union all select '湖北省' provinc ...