先跑一边dijkstra算出从1到i的最短距离dis[i]

然后建反向边 从n开始记忆化搜索,(p,k)表示1到p的距离=dis[p]+k的方案数

答案就是$\sum\limits_{i=0}^{k}{(n,i)}$

考虑0环,如果我记搜的时候搜到了0环,那答案就是-1,可以先用tarjan处理一下0边 看看有哪些点在零环上

(其实也可以开个栈 做到(p,k)的时候看(p,k)是不是已经在栈中了 如果是那就是-1)

 #include<bits/stdc++.h>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
typedef pair<int,int> pa;
const int maxn=1e5+,maxm=2e5+,maxk=; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} struct Edge{
int b,l,ne;
}eg[maxm],neg[maxm];
struct Node{
int p,k,n;
Node(int a=,int b=,int c=){p=a,k=b,n=c;}
};
int egh[maxn],negh[maxn],ect,nect;
int dis[maxn],f[maxn][maxk];
int dfn[maxn],tot,low[maxn],stk[maxn],sh;
int N,M,K,P;
bool in0[maxn],instk[maxn],flag[maxn]; inline void adeg(int a,int b,int c){
eg[++ect].b=b,eg[ect].l=c,eg[ect].ne=egh[a],egh[a]=ect;
neg[++nect].b=a,neg[nect].l=c,neg[nect].ne=negh[b],negh[b]=nect;
} void tarjan(int x){
dfn[x]=low[x]=++tot,instk[x]=,stk[++sh]=x;
for(int i=egh[x];i;i=eg[i].ne){
if(eg[i].l) continue;
int b=eg[i].b;
if(!dfn[b]) tarjan(b),low[x]=min(low[x],low[b]);
else if(instk[b]) low[x]=min(low[x],dfn[b]);
}
if(dfn[x]==low[x]){
int n=;
for(int i=sh;stk[i]!=x;i--) n++;
while(){
instk[stk[sh]]=;
in0[stk[sh]]=n>;
if(stk[sh--]==x) break;
}
}
} priority_queue<pa,vector<pa>,greater<pa> > q;
inline void dijkstra(){
while(!q.empty()) q.pop();
CLR(flag,);CLR(dis,);dis[]=;
q.push(make_pair(,));
while(!q.empty()){
int p=q.top().second;q.pop();
if(flag[p]) continue;
flag[p]=;
for(int i=egh[p];i;i=eg[i].ne){
int b=eg[i].b;
if(dis[b]>dis[p]+eg[i].l){
dis[b]=dis[p]+eg[i].l;
q.push(make_pair(dis[b],b));
}
}
}
} inline int solve(int x,int y){
// if(f[x][y]>=0) printf("get%d %d %d\n",x,y,f[x][y]);
if(y<||y>K) return ;
if(in0[x]) return -;
if(f[x][y]>=) return f[x][y];
f[x][y]=;
for(int i=negh[x];i;i=neg[i].ne){
int b=neg[i].b;
int re=solve(b,dis[x]-dis[b]+y-neg[i].l);
if(re==-) return -;
f[x][y]+=re,f[x][y]%=P;
}
return f[x][y];
} int main(){
int i,j,k;
for(int T=rd();T;T--){
N=rd(),M=rd(),K=rd(),P=rd();
CLR(egh,);ect=;
CLR(negh,);nect=;
for(i=;i<=M;i++){
int a=rd(),b=rd(),c=rd();
adeg(a,b,c);
}
CLR(dfn,);CLR(instk,);tot=;CLR(in0,);
for(i=;i<=N;i++)
if(!dfn[i]) tarjan(i);
dijkstra();
CLR(f,-);
f[][]=;int ans=;
for(i=;i<=K;i++)
ans+=solve(N,i),ans%=P;
printf("%d\n",ans<?-:ans);
} return ;
}

luogu3953 [NOIp2017]逛公园 (tarjan+dijkstra+记忆化搜索)的更多相关文章

  1. Luogu P3953 逛公园(最短路+记忆化搜索)

    P3953 逛公园 题面 题目描述 策策同学特别喜欢逛公园.公园可以看成一张 \(N\) 个点 \(M\) 条边构成的有向图,且没有自环和重边.其中 \(1\) 号点是公园的入口,\(N\) 号点是公 ...

  2. HDU1142 (Dijkstra+记忆化搜索)

    A Walk Through the Forest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Jav ...

  3. Luogu 3953[NOIP2017] 逛公园 堆优化dijkstra + 记忆化搜索

    题解 首先肯定是要求出单源最短路的,我用了堆优化dijikstra ,复杂度 mlogm,值得拥有!(只不过我在定义优先队列时把greater 打成了 less调了好久 然后我们就求出了$i$到源点的 ...

  4. HDU 1142 A Walk Through the Forest(Dijkstra+记忆化搜索)

    题意:看样子很多人都把这题目看错了,以为是求最短路的条数.真正的意思是:假设 A和B 是相连的,当前在 A 处, 如果 A 到终点的最短距离大于 B 到终点的最短距离,则可以从 A 通往 B 处,问满 ...

  5. 【UVA11324】 The Largest Clique (Tarjan+topsort/记忆化搜索)

    UVA11324 The Largest Clique 题目描述 给你一张有向图 \(G\),求一个结点数最大的结点集,使得该结点集中的任意两个结点 \(u\) 和 \(v\) 满足:要么 \(u\) ...

  6. 洛谷 P3953 逛公园【spfa+记忆化dfs+bfs】

    spfa预处理出最短路数组dis,然后反向建边bfs出ok[u]表示u能到n点 然后发现有0环的话时候有inf解的,先dfs找0环判断即可 然后dfs,设状态f[u][v]为到u点,还可以跑最短路+v ...

  7. Luogu3953 NOIP2017逛公园(最短路+拓扑排序+动态规划)

    跑一遍dij根据最短路DAG进行拓扑排序,按拓扑序dp即可.wa了三发感觉非常凉. #include<iostream> #include<cstdio> #include&l ...

  8. 逛公园 [NOIP2017 D1T3] [记忆化搜索]

    Description 策策同学特别喜欢逛公园.公园可以看成一张N个点M条边构成的有向图,且没有自环和重边.其中1号点是公园的入口,N号点是公园的出口,每条边有一个非负权值,代表策策经过这条边所要花的 ...

  9. 【NOIP2017】逛公园 拆点最短路+拓扑(记忆化搜索

    题目描述 策策同学特别喜欢逛公园.公园可以看成一张N个点M条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,N号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要花的时间. 策 ...

随机推荐

  1. oracle一些单记录函数

    单记录函数 1.0 NVL() 作用:从两个表达式返回一个非NULL值 用法:NVL(表达式1, 表达式2) 如果表达式1的结果不为NULL,返回表达式1的结果:如果表达式1的结果为NULL,返回表达 ...

  2. [转帖]SAP进阶:再论SAP权限

    SAP进阶:再论SAP权限 http://blog.vsharing.com/MilesForce/A634100.html 网上有不少关于权限的文章,多是转来转去,COPY的台湾某个人N年前的PPT ...

  3. [转帖]AMOLED的技术和OLED有哪些联系和区别

    AMOLED的技术和OLED有哪些联系和区别 https://display.ofweek.com/2018-06/ART-11000-2300-30243226.html 硬件资料 导读: ?虽然L ...

  4. png8、16、24、32位的区别

    我们都知道一张图片可以保存为很多种不同的格式,比如bmp/png/jpeg/gif等等.这个是从文件格式的角度看,我们抛开文件格式,看图片本身,我们可以分为8位, 16位, 24位, 32位等. 单击 ...

  5. Sublime Text3配置

    { "default_encoding": "UTF-8", "font_size": 16.0, "tab_size" ...

  6. Linux基础学习笔记6-SHELL编程

    编程基础 程序:指令+数据 程序编程风格: 过程式:以指令为中心,数据服务于指令 对象式:以数据为中心,指令服务于数据 shell程序:提供了编程能力,解释执行 编程基本概念: 顺序执行:循环执行:选 ...

  7. python爬虫scrapy之登录知乎

    下面我们看看用scrapy模拟登录的基本写法: 注意:我们经常调试代码的时候基本都用chrome浏览器,但是我就因为用了谷歌浏览器(它总是登录的时候不提示我用验证码,误导我以为登录时不需要验证码,其实 ...

  8. commons-lang

    今天在编码的过程中,对于null,采用==null进行判断.并且为了过滤"",使用了str.trim().length()==0,当str为null时,报空指针异常. 于是决定使用 ...

  9. nvidia-smi实时刷新并高亮显示状态

    watch -n 1 -d nvidia-smi 间隔1秒刷新

  10. Build 2017 Revisited: .NET, XAML, Visual Studio

    For the next couple months we're going to revisit Build 2017, each post focusing on different aspect ...