http://codeforces.com/problemset/problem/794/D

题意:在一个国家有 n 座城市和一些双向边。这些城市被编号为 1 到 n。 一共有 m 条双线边,第 i条边连接城市 ui 和 vi。保证任意两个城市是连通的。

每个城市都有一个标签,第 i 个城市的标签为 xi。对于任意一对点 (u, v) ,如果这对点满足 |xu - xv| ≤ 1 则一定有一条边,否则一定没有。

现在我们想知道是否存在这样一种合法的标签方式。

显而易见的可以看出一个结论,就是如果一个点连出去的三个边互不连通,就是不可行的

不怎么显而易见甚至需要看一下题解才能发现的第二个结论,就是如果一个点和他连到的点组成的集合与另一个点和他连到的点组成的集合完全相同的话,一定存在一种标签方法使得他们的标签相同

因为这样可以使得这两个点对除了这两个点之外的点的限制最小。

将所有这样的点缩点之后,原本的图就变成了一条链,我们采用直接染色的方法去检查就可以了

对于第二个结论,产生的点集合,可以用图上的Hash来解决,奥妙重重。

#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Sca3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = 3e5 + ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
int N,M,K;
struct Edge{
int to,next;
}edge[maxn * ];
int head[maxn],tot;
ULL Hash[maxn];
ULL id[maxn];
int color[maxn];
bool vis[maxn],use[maxn * ];
void init(){
Mem(head,-);
tot = ;
}
void add(int u,int v){
edge[tot].next = head[u];
edge[tot].to = v;
head[u] = tot++;
}
void dfs(int x){
vis[x] = ;
for(int i = head[x]; ~i; i = edge[i].next){
int v = edge[i].to;
if(Hash[v] == Hash[x]) color[v] = color[x];
}
for(int i = head[x]; ~i; i = edge[i].next){
int v = edge[i].to;
if(!vis[v]){
if(!color[v]){
for(int j = color[x] - ; j <= color[x] + ; j ++){
if(!use[j]){
color[v] = j;
use[j] = ;
break;
}
}
}
dfs(v);
}
}
}
int main()
{
Sca2(N,M); init(); id[] = ;
For(i,,N) Hash[i] = id[i] = id[i - ] * ;
For(i,,M){
int u,v; Sca2(u,v);
add(u,v); add(v,u);
Hash[u] += id[v]; Hash[v] += id[u];
}
color[] = 3e5 + ; use[color[]] = ; vis[] = ;
dfs();
For(i,,N) if(!color[i]){puts("NO");return ;}
puts("YES");
For(i,,N) printf("%d ",color[i]);
#ifdef VSCode
system("pause");
#endif
return ;
}

codeforces794D dfs+图上hash的更多相关文章

  1. thinkphp3.2.2有预览的多图上传

    thinkphp3.2.2有预览的多图上传 整体思路 1 封装文件上传和图片上传的类文件 2 视图中添加相关JS和表单提交 3 控制器中添加上传文件的相关代码 一 2个class 文件 请上传到/Th ...

  2. Java企业微信开发_07_JSSDK多图上传

    一.本节要点 1.1可信域名 所有的JS接口只能在企业微信应用的可信域名下调用(包括子域名),可在企业微信的管理后台“我的应用”里设置应用可信域名.这个域名必须要通过ICP备案,不然jssdk会配置失 ...

  3. HDU 3249 Test for job (有向无环图上的最长路,DP)

     解题思路: 求有向无环图上的最长路.简单的动态规划 #include <iostream> #include <cstring> #include <cstdlib ...

  4. 【学习笔记】有向无环图上的DP

    手动博客搬家: 本文发表于20180716 10:49:04, 原地址https://blog.csdn.net/suncongbo/article/details/81061378 首先,感谢以下几 ...

  5. 2019-ACM-ICPC-南京区网络赛-D. Robots-DAG图上概率动态规划

    2019-ACM-ICPC-南京区网络赛-D. Robots-DAG图上概率动态规划 [Problem Description] ​ 有向无环图中,有个机器人从\(1\)号节点出发,每天等概率的走到下 ...

  6. [hdu5348]图上找环,删环

    http://acm.hdu.edu.cn/showproblem.php?pid=5348 题意:给一个无向图,现在要将其变成有向图,使得每一个顶点的|出度-入度|<=1 思路:分为两步,(1 ...

  7. 2021.11.14 CF1583E Moment of Bloom(LCA+图上构造)

    2021.11.14 CF1583E Moment of Bloom(LCA+图上构造) https://www.luogu.com.cn/problem/CF1583E 题意: She does h ...

  8. yii2组件之多图上传插件FileInput的详细使用

    作者:白狼 出处:http://www.manks.top/yii2_multiply_images.html 本文版权归作者,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连 ...

  9. [python]沪深龙虎榜数据导入通达信的自选板块,并标注于K线图上

    将沪深龙虎榜数据导入通达信的自选板块,并标注于K线图上 原理:python读取前一次处理完的计算5日后涨跌幅输出的csv文件 文件名前加"[paint]" 安照通达信的画图文件和板 ...

随机推荐

  1. 工厂类,配置文件,静态方法,反射构成编译器解耦;ioc的一个概念 ;通过xml创建容器里面存储对象

    工厂类,配置文件,静态,反射方法构成编译器解耦;ioc的一个概念

  2. Spring注解与Java元注解小结

    注解 Annotation 基于注解的开发,使得代码简洁,可读性高,简化的配置的同时也提高了开发的效率,尤其是SpringBoot的兴起,随着起步依赖和自动配置的完善,更是将基于注解的开发推到了新的高 ...

  3. M - 约会安排 HDU - 4553 线段树 (最长连续段)

    中文题面 思路:维和两个区间  一个是女神区间 一个是基友区间  如果是基友要预约时间 直接在基友区间查询可满足的起点 (这里先判tree[1].m >=length也就是有没有这样的区间满足时 ...

  4. UOJ370 滑稽树上滑稽果 【状压DP】

    题目分析: 答案肯定是链,否则可以把枝干放到主干. 去除一直存在的位,这样0位占满时就会结束. 用$f[S]$表示0位填埋情况,每次转移是它的一个子集,我们考虑可否转移. 再用$g[S]$存储转移是否 ...

  5. 大学jsp实验6session

    1.session对象的使用 (1)设计一个简单的在线问卷调查程序,共有3个页面,分别是one.jsp.two.jsp.three.jsp. 其中,shiyan6_1_one.jsp页面效果如下图所示 ...

  6. 初略 异步IO

    import asyncio asyncio.coroutine() from concurrent.futures import ThreadPoolExecutor def task(): pri ...

  7. python中的map函数

    def f(x): return x * x """将一个全是数字的list变成平方形式""" def f2(): ls = [1, 2, ...

  8. bzoj 1083: [SCOI2005]繁忙的都市 (最小生成树)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1083 思路:连接所有点,肯定最少是需要n-1条边的,也就是写个最小生成树,记得保存下最大的权 ...

  9. 【CodeForces 730H】Delete Them

    BUPT 2017 summer training (for 16) #1E 题意 找到匹配要删除的文件名们但不匹配其它文件名们的表达式.其中?匹配所有字符,其它字符匹配本身. 题解 如果某个位置出现 ...

  10. python学习日记(编码再回顾)

    当想从一种编码方式转换为另一种编码方式时,执行的就是以上步骤. 在python3里面,默认编码方式是unicode,所以无需解码(decode),直接编码(encode)成你想要的编码方式就可以了. ...