mapreduce join
MapReduce Join
对两份数据data1和data2进行关键词连接是一个很通用的问题,如果数据量比较小,可以在内存中完成连接。
如果数据量比较大,在内存进行连接操会发生OOM。mapreduce join可以用来解决大数据的连接。
1 思路
1.1 reduce join
在map阶段, 把关键字作为key输出,并在value中标记出数据是来自data1还是data2。因为在shuffle阶段已经自然按key分组,reduce阶段,判断每一个value是来自data1还是data2,在内部分成2组,做集合的乘积。
这种方法有2个问题:
1, map阶段没有对数据瘦身,shuffle的网络传输和排序性能很低。
2, reduce端对2个集合做乘积计算,很耗内存,容易导致OOM。
1.2 map join
两份数据中,如果有一份数据比较小,小数据全部加载到内存,按关键字建立索引。大数据文件作为map的输入文件,对map()函数每一对输入,都能够方便地和已加载到内存的小数据进行连接。把连接结果按key输出,经过shuffle阶段,reduce端得到的就是已经按key分组的,并且连接好了的数据。
这种方法,要使用hadoop中的DistributedCache把小数据分布到各个计算节点,每个map节点都要把小数据库加载到内存,按关键字建立索引。
这种方法有明显的局限性:有一份数据比较小,在map端,能够把它加载到内存,并进行join操作。
1.3 使用内存服务器,扩大节点的内存空间
针对map join,可以把一份数据存放到专门的内存服务器,在map()方法中,对每一个<key,value style="margin: 0px; padding: 0px;">的输入对,根据key到内存服务器中取出数据,进行连接
1.4 使用BloomFilter过滤空连接的数据
对其中一份数据在内存中建立BloomFilter,另外一份数据在连接之前,用BloomFilter判断它的key是否存在,如果不存在,那这个记录是空连接,可以忽略。
1.5 使用mapreduce专为join设计的包
在mapreduce包里看到有专门为join设计的包,对这些包还没有学习,不知道怎么使用,只是在这里记录下来,作个提醒。
jar: mapreduce-client-core.jar
package: org.apache.hadoop.mapreduce.lib.join
2 实现map join
相对而言,map join更加普遍,下面的代码使用DistributedCache实现map join
2.1 背景
有客户数据customer和订单数据orders。
customer
客户编号 | 姓名 | 地址 | 电话 |
---|---|---|---|
1 | hanmeimei | ShangHai | 110 |
2 | leilei | BeiJing | 112 |
3 | lucy | GuangZhou | 119 |
** order**
订单编号 | 客户编号 | 其它字段被忽略 |
---|---|---|
1 | 1 | 50 |
2 | 1 | 200 |
3 | 3 | 15 |
4 | 3 | 350 |
5 | 3 | 58 |
6 | 1 | 42 |
7 | 1 | 352 |
8 | 2 | 1135 |
9 | 2 | 400 |
10 | 2 | 2000 |
11 | 2 | 300 |
要求对customer和orders按照客户编号进行连接,结果要求对客户编号分组,对订单编号排序,对其它字段不作要求
客户编号 | 订单编号 | 订单金额 | 姓名 | 地址 | 电话 |
---|---|---|---|---|---|
1 | 1 | 50 | hanmeimei | ShangHai | 110 |
1 | 2 | 200 | hanmeimei | ShangHai | 110 |
1 | 6 | 42 | hanmeimei | ShangHai | 110 |
1 | 7 | 352 | hanmeimei | ShangHai | 110 |
2 | 8 | 1135 | leilei | BeiJing | 112 |
2 | 9 | 400 | leilei | BeiJing | 112 |
2 | 10 | 2000 | leilei | BeiJing | 112 |
2 | 11 | 300 | leilei | BeiJing | 112 |
3 | 3 | 15 | lucy | GuangZhou | 119 |
3 | 4 | 350 | lucy | GuangZhou | 119 |
3 | 5 | 58 | lucy | GuangZhou | 119 |
- 在提交job的时候,把小数据通过DistributedCache分发到各个节点。
- map端使用DistributedCache读到数据,在内存中构建映射关系--如果使用专门的内存服务器,就把数据加载到内存服务器,map()节点可以只保留一份小缓存;如果使用BloomFilter来加速,在这里就可以构建;
- map()函数中,对每一对<key,value style="margin: 0px; padding: 0px;">,根据key到第2)步构建的映射里面中找出数据,进行连接,输出。
2. 常见的join方法介绍
假设要进行join的数据分别来自File1和File2.
2.1 reduce side join
reduce side join是一种最简单的join方式,其主要思想如下:
在map阶段,map函数同时读取两个文件File1和File2,为了区分两种来源的key/value数据对,对每条数据打一个标签(tag),比如:tag=0表示来自文件File1,tag=2表示来自文件File2。即:map阶段的主要任务是对不同文件中的数据打标签。
在reduce阶段,reduce函数获取key相同的来自File1和File2文件的value list, 然后对于同一个key,对File1和File2中的数据进行join(笛卡尔乘积)。即:reduce阶段进行实际的连接操作。
2.2 map side join
之所以存在reduce side join,是因为在map阶段不能获取所有需要的join字段,即:同一个key对应的字段可能位于不同map中。Reduce side join是非常低效的,因为shuffle阶段要进行大量的数据传输。
Map side join是针对以下场景进行的优化:两个待连接表中,有一个表非常大,而另一个表非常小,以至于小表可以直接存放到内存中。这样,我们可以将小表复制多份,让每个map task内存中存在一份(比如存放到hash table中),然后只扫描大表:对于大表中的每一条记录key/value,在hash table中查找是否有相同的key的记录,如果有,则连接后输出即可。
为了支持文件的复制,Hadoop提供了一个类DistributedCache,使用该类的方法如下:
(1)用户使用静态方法DistributedCache.addCacheFile()指定要复制的文件,它的参数是文件的URI(如果是HDFS上的文件,可以这样:hdfs://namenode:9000/home/XXX/file,其中9000是自己配置的NameNode端口号)。JobTracker在作业启动之前会获取这个URI列表,并将相应的文件拷贝到各个TaskTracker的本地磁盘上。(2)用户使用DistributedCache.getLocalCacheFiles()方法获取文件目录,并使用标准的文件读写API读取相应的文件。
2.3 SemiJoin
SemiJoin,也叫半连接,是从分布式数据库中借鉴过来的方法。它的产生动机是:对于reduce side join,跨机器的数据传输量非常大,这成了join操作的一个瓶颈,如果能够在map端过滤掉不会参加join操作的数据,则可以大大节省网络IO。
实现方法很简单:选取一个小表,假设是File1,将其参与join的key抽取出来,保存到文件File3中,File3文件一般很小,可以放到内存中。在map阶段,使用DistributedCache将File3复制到各个TaskTracker上,然后将File2中不在File3中的key对应的记录过滤掉,剩下的reduce阶段的工作与reduce side join相同。
更多关于半连接的介绍,可参考:半连接介绍:http://wenku.baidu.com/view/ae7442db7f1922791688e877.html
2.4 reduce side join + BloomFilter
在某些情况下,SemiJoin抽取出来的小表的key集合在内存中仍然存放不下,这时候可以使用BloomFiler以节省空间。
BloomFilter最常见的作用是:判断某个元素是否在一个集合里面。它最重要的两个方法是:add() 和contains()。最大的特点是不会存在false negative,即:如果contains()返回false,则该元素一定不在集合中,但会存在一定的true negative,即:如果contains()返回true,则该元素可能在集合中。
因而可将小表中的key保存到BloomFilter中,在map阶段过滤大表,可能有一些不在小表中的记录没有过滤掉(但是在小表中的记录一定不会过滤掉),这没关系,只不过增加了少量的网络IO而已。
更多关于BloomFilter的介绍,可参考:http://blog.csdn.net/jiaomeng/article/details/1495500
3. 二次排序
在Hadoop中,默认情况下是按照key进行排序,如果要按照value进行排序怎么办?即:对于同一个key,reduce函数接收到的value list是按照value排序的。这种应用需求在join操作中很常见,比如,希望相同的key中,小表对应的value排在前面。
有两种方法进行二次排序,分别为:buffer and in memory sort和 value-to-key conversion。
对于buffer and in memory sort,主要思想是:在reduce()函数中,将某个key对应的所有value保存下来,然后进行排序。 这种方法最大的缺点是:可能会造成out of memory。
对于value-to-key conversion,主要思想是:将key和部分value拼接成一个组合key(实现WritableComparable接口或者调用setSortComparatorClass函数),这样reduce获取的结果便是先按key排序,后按value排序的结果,需要注意的是,用户需要自己实现Paritioner,以便只按照key进行数据划分。Hadoop显式的支持二次排序,在Configuration类中有个setGroupingComparatorClass()方法,可用于设置排序group的key值
MapReduce Join
对两份数据data1和data2进行关键词连接是一个很通用的问题,如果数据量比较小,可以在内存中完成连接。
如果数据量比较大,在内存进行连接操会发生OOM。mapreduce join可以用来解决大数据的连接。
1 思路
1.1 reduce join
在map阶段, 把关键字作为key输出,并在value中标记出数据是来自data1还是data2。因为在shuffle阶段已经自然按key分组,reduce阶段,判断每一个value是来自data1还是data2,在内部分成2组,做集合的乘积。
这种方法有2个问题:
1, map阶段没有对数据瘦身,shuffle的网络传输和排序性能很低。
2, reduce端对2个集合做乘积计算,很耗内存,容易导致OOM。
1.2 map join
两份数据中,如果有一份数据比较小,小数据全部加载到内存,按关键字建立索引。大数据文件作为map的输入文件,对map()函数每一对输入,都能够方便地和已加载到内存的小数据进行连接。把连接结果按key输出,经过shuffle阶段,reduce端得到的就是已经按key分组的,并且连接好了的数据。
这种方法,要使用hadoop中的DistributedCache把小数据分布到各个计算节点,每个map节点都要把小数据库加载到内存,按关键字建立索引。
这种方法有明显的局限性:有一份数据比较小,在map端,能够把它加载到内存,并进行join操作。
1.3 使用内存服务器,扩大节点的内存空间
针对map join,可以把一份数据存放到专门的内存服务器,在map()方法中,对每一个<key,value style="margin: 0px; padding: 0px;">的输入对,根据key到内存服务器中取出数据,进行连接
1.4 使用BloomFilter过滤空连接的数据
对其中一份数据在内存中建立BloomFilter,另外一份数据在连接之前,用BloomFilter判断它的key是否存在,如果不存在,那这个记录是空连接,可以忽略。
1.5 使用mapreduce专为join设计的包
在mapreduce包里看到有专门为join设计的包,对这些包还没有学习,不知道怎么使用,只是在这里记录下来,作个提醒。
jar: mapreduce-client-core.jar
package: org.apache.hadoop.mapreduce.lib.join
2 实现map join
相对而言,map join更加普遍,下面的代码使用DistributedCache实现map join
2.1 背景
有客户数据customer和订单数据orders。
customer
客户编号 | 姓名 | 地址 | 电话 |
---|---|---|---|
1 | hanmeimei | ShangHai | 110 |
2 | leilei | BeiJing | 112 |
3 | lucy | GuangZhou | 119 |
** order**
订单编号 | 客户编号 | 其它字段被忽略 |
---|---|---|
1 | 1 | 50 |
2 | 1 | 200 |
3 | 3 | 15 |
4 | 3 | 350 |
5 | 3 | 58 |
6 | 1 | 42 |
7 | 1 | 352 |
8 | 2 | 1135 |
9 | 2 | 400 |
10 | 2 | 2000 |
11 | 2 | 300 |
要求对customer和orders按照客户编号进行连接,结果要求对客户编号分组,对订单编号排序,对其它字段不作要求
客户编号 | 订单编号 | 订单金额 | 姓名 | 地址 | 电话 |
---|---|---|---|---|---|
1 | 1 | 50 | hanmeimei | ShangHai | 110 |
1 | 2 | 200 | hanmeimei | ShangHai | 110 |
1 | 6 | 42 | hanmeimei | ShangHai | 110 |
1 | 7 | 352 | hanmeimei | ShangHai | 110 |
2 | 8 | 1135 | leilei | BeiJing | 112 |
2 | 9 | 400 | leilei | BeiJing | 112 |
2 | 10 | 2000 | leilei | BeiJing | 112 |
2 | 11 | 300 | leilei | BeiJing | 112 |
3 | 3 | 15 | lucy | GuangZhou | 119 |
3 | 4 | 350 | lucy | GuangZhou | 119 |
3 | 5 | 58 | lucy | GuangZhou | 119 |
- 在提交job的时候,把小数据通过DistributedCache分发到各个节点。
- map端使用DistributedCache读到数据,在内存中构建映射关系--如果使用专门的内存服务器,就把数据加载到内存服务器,map()节点可以只保留一份小缓存;如果使用BloomFilter来加速,在这里就可以构建;
- map()函数中,对每一对<key,value style="margin: 0px; padding: 0px;">,根据key到第2)步构建的映射里面中找出数据,进行连接,输出。
mapreduce join的更多相关文章
- SQL join中级篇--hive中 mapreduce join方法分析
1. 概述. 本文主要介绍了mapreduce框架上如何实现两表JOIN. 2. 常见的join方法介绍 假设要进行join的数据分别来自File1和File2. 2.1 reduce side jo ...
- MapReduce Join的使用
一.Map端Join 可连接两个都非常大的数据集之间可使用map端连接,数据在到达map端之前就执行连接操作. 需满足: 两个要连接的数据集都先划分成相同数量的分区,相同的key要保证在同一分区中(每 ...
- MapReduce Join关联
Reduce join 原理 Map端的主要工作:为来自不同表(文件)的key/value对打标签以区别不同来源的记录.然后用连接字段作为key,其余部分和新加的标志作为value,最后进行输出. R ...
- mapreduce join操作
上次和朋友讨论到mapreduce,join应该发生在map端,理由太想当然到sql里面的执行过程了 wheremap端 join在map之前(笛卡尔积),但实际上网上看了,mapreduce的笛卡尔 ...
- Hadoop.2.x_高级应用_二次排序及MapReduce端join
一.对于二次排序案例部分理解 1. 分析需求(首先对第一个字段排序,然后在对第二个字段排序) 杂乱的原始数据 排序完成的数据 a,1 a,1 b,1 a,2 a,2 [排序] a,100 b,6 == ...
- MapReduce实现的Join
MapReduce Join 对两份数据data1和data2进行关键词连接是一个很通用的问题,如果数据量比较小,可以在内存中完成连接. 如果数据量比较大,在内存进行连接操会发生OOM.mapredu ...
- MapReduce中的Join算法
在关系型数据库中Join是非常常见的操作,各种优化手段已经到了极致.在海量数据的环境下,不可避免的也会碰到这种类型的需求,例如在数据分析时需要从不同的数据源中获取数据.不同于传统的单机模式,在分布式存 ...
- 大数据mapreduce俩表join之python实现
二次排序 在Hadoop中,默认情况下是按照key进行排序,如果要按照value进行排序怎么办?即:对于同一个key,reduce函数接收到的value list是按照value排序的.这种应用需求在 ...
- Hadoop学习之路(二十一)MapReduce实现Reduce Join(多个文件联合查询)
MapReduce Join 对两份数据data1和data2进行关键词连接是一个很通用的问题,如果数据量比较小,可以在内存中完成连接. 如果数据量比较大,在内存进行连接操会发生OOM.mapredu ...
随机推荐
- C和指针 (pointers on C)——第七章:函数(上)
第七章 函数 这一章对于有一定C的基础的人有一定优秀代码风格的人来说,并非非常虐.关于stdarg宏可能有些陌生.它负责可变參数列表的定义. 总结: 新式风格和旧式风格就不要提了.八百年前的事情. 函 ...
- vue数据绑定数组,改变元素时不更新view问题
关于这个问题,官网上说的很清楚官方文档 写个例子HTML<body> <div class="box"> <div v-for="aa i ...
- 深度学习之Attention Model(注意力模型)
1.Attention Model 概述 深度学习里的Attention model其实模拟的是人脑的注意力模型,举个例子来说,当我们观赏一幅画时,虽然我们可以看到整幅画的全貌,但是在我们深入仔细地观 ...
- P1460 健康的荷斯坦奶牛 Healthy(DFS)
思路:这道题还是用了小小的剪枝,这里要注意的是该题有很多中构建树的顺序,但是,在这众多顺序中不一定都能保证输出的方案字典序最小. 构建搜索树:如图构建 剪枝,emmm,看代码: #include< ...
- Python:Day07 作业
三级菜单: 自己做的代码: china = { '江苏':{ '南京':{ '江宁':{}, '白下':{}, '栖霞':{}, '江淮':{}, '浦口':{} }, '宿迁':{ '宿城区':{} ...
- 禁止 gVim 在 Linux 下自动生成 undo 文件 *.un~
在配置文件 .vimrc 中加入配置项, set noundofile 完.
- Python IDLE 增加清屏功能
(Python2,Python3 通用) 保存如下代码到 ClearWindow.py """ Clear Window Extension Version: 0.2 A ...
- bzoj-1787-洛谷-4281(LCA板子题)
传送门(bzoj) 传送门(洛谷) 可以说这道也是一个板子题 由于题中是三个人需经过的路径最短 就会有一点点不太一样 那么 就两两求LCA 这样之后就会出现两种状况 一.所得到的三个LCA是相等的 那 ...
- js 动态调用字符串方法并传入对应参数
在项目应用中,经常会需要根据业务数据需要动态去拼凑字符串,然后将字符串作为js代码进行执行. js提供eval()来支持.这里分享一个调用函数并传入需要参数的一个方法demo //动态调用自定义js方 ...
- Jenkins Pipeline高级用法-ShareLibrary
1.Github配置 1.1 上传jenkinsfile到github https://github.com/zeyangli/ShareLibrary-jenkins.git 2.Jenkins配置 ...