Description

A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles:


Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.

Input

The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1<=n<=100000. Then follow n integers h1,...,hn, where 0<=hi<=1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.

Output

For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.

Sample Input

7 2 1 4 5 1 3 3
4 1000 1000 1000 1000
0

Sample Output

8
4000

Hint

Huge input, scanf is recommended.
 
题意:n个矩形,然后给出每个矩形的高(宽度都为1),求出其中最大矩形的面积
 
思路:对于高度递增的矩形序列,我们可以尝试以每一块的高度为最终高度,然后向后延申宽度,最大面积就是答案。
但是当前高度小于之前矩形的高度时,我们可以先回溯,之前的矩形肯定时高度递增的,回溯的目的时更新之前矩形所能形成的最大的答案

(黄色区域为回溯时,矩形高度仍大于当前矩形,更新的答案)

 
直到之前的矩形高度小于当前矩形,就将之前所积累的(宽度+1),当成新矩形的宽度,高度就是当前矩形高度,这样的对于后面的矩形,又形成了新的递增型矩形序列
而且由于回溯的时候,我们将舍弃的部分能形成的最大面积已经考虑了,所以不会出现答案遗失(对于后面的矩形紫色无法利用的,被当前矩形限制了高度,所以舍弃,加入扩展了的当前矩形)

最后,对整个递增的矩形序列进行一次回溯,答案的更新,为了方便将其最后加入一个高度为0的矩形,当然不加另外判断也ok

(用不用栈无所谓,重要的是单调性)

#include<iostream>
#include<cstdio>
#include<stack>
using namespace std; typedef long long ll;
const int maxn = 1e5+;
stack<ll>s;
ll ans;
int w[maxn];
int h[maxn];
int n;
int main()
{
while(~scanf("%d",&n) && n)
{
for(int i=;i<=n;i++)scanf("%d",&h[i]);
while(!s.empty())s.pop();
int pos = ;
h[n+] = ;
ans = ;
for(int i=;i<=n+;i++)
{
if(s.empty() || h[i] >= s.top())
{
s.push(h[i]);
w[++pos] = ;
}
else
{
int width = ;
while(!s.empty() && s.top() > h[i])
{
width += w[pos];
ans = max(ans,s.top()*width);
s.pop();
pos--;
}
s.push(h[i]);
w[++pos] = width+;
}
}
printf("%lld\n",ans);
}
}

Largest Rectangle in a Histogram POJ - 2559 (单调栈)的更多相关文章

  1. [POJ 2559]Largest Rectangle in a Histogram 题解(单调栈)

    [POJ 2559]Largest Rectangle in a Histogram Description A histogram is a polygon composed of a sequen ...

  2. 题解 POJ 2559【Largest Rectangle in a Histogram】(单调栈)

    题目链接:http://poj.org/problem?id=2559 思路:单调栈 什么是单调栈? 单调栈,顾名思义,就是单调的栈,也就是占中存的东西永远是单调(也就是递增或递减)的 如何实现一个单 ...

  3. Largest Rectangle in a Histogram POJ - 2559

    很显然是单调栈 这里记录一种新的写法,这种写法基于递推,但是相比之下比单调栈更好写 #include<cstdio> #include<map> #include<set ...

  4. HDU——T 1506 Largest Rectangle in a Histogram|| POJ——T 2559 Largest Rectangle in a Histogram

    http://acm.hdu.edu.cn/showproblem.php?pid=1506  || http://poj.org/problem?id=2559 Time Limit: 2000/1 ...

  5. poj 2559 单调栈 ***

    给出一系列的1*h的矩形,求矩形的最大面积. 如图: 题解链接:点我 #include <iostream> #include <cstdio> using namespace ...

  6. poj 2559 Largest Rectangle in a Histogram (单调栈)

    http://poj.org/problem?id=2559 Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 6 ...

  7. poj 2559 Largest Rectangle in a Histogram - 单调栈

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19782 ...

  8. POJ 2559 Largest Rectangle in a Histogram(单调栈)

    传送门 Description A histogram is a polygon composed of a sequence of rectangles aligned at a common ba ...

  9. POJ 2559 Largest Rectangle in a Histogram (单调栈或者dp)

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15831 ...

随机推荐

  1. plugin-barcodescanner 报错

    https://github.com/phonegap/phonegap-plugin-barcodescanner/issues/418 ionic cordova platform rm andr ...

  2. day 08字符编码 文件处理

    字符编码1.软件启动流程(打开notepad++文档)从硬盘将软件加载到内存上加载test.txt到内存中执行notepad++的代码,将test.txt打到屏幕上 python解释器也是一个应用软件 ...

  3. 1705: 小明在工作(zzuli)

    题目描述 小明的工作是负责记录饭堂中正在排队的人的信息 在他的工作中会有三种可能的事件发生:     1.编号为id的学生加入到队伍的最后面     2.排在最前面的学生打完饭离开了队伍     3. ...

  4. linux下mysql源码安装

    参考链接:http://blog.csdn.net/zqtsx/article/details/9378703 下载mysql安装包, 不会下载点这里 地址:ftp://mirror.switch.c ...

  5. 如何在EXCEL中找出第一列中不包含的第二列数据

    1.找出第一列中不包含的第二列数据:=IFERROR(VLOOKUP(A:A,B:B,1,0),"无") 2.A列相同,B列相加:=SUMIF(G:G,G1,J:J)

  6. python基础复习

    复习-基础 一.review-base 其他语言吗和python的对比 c vs Python c语言是python的底层实现,解释器就是由python编写的. c语言开发的程序执行效率高,开发现率低 ...

  7. 史上最简单的SpringCloud教程 | 第四篇:断路器(Hystrix)

    在微服务架构中,根据业务来拆分成一个个的服务,服务与服务之间可以相互调用(RPC),在Spring Cloud可以用RestTemplate+Ribbon和Feign来调用.为了保证其高可用,单个服务 ...

  8. 使用android-ndk官方ndkbuild例子

    Why this blog 现在(2018年9月27日),Android Studio中新建ndk项目都使用cmake而不是Android.mk+Application.mk的方式.但老项目需要维护, ...

  9. Can't connect to X11 window server using 的问题,求解

    在JVM中加入-Djava.awt.headless=true对于tomcat ,可以修改catalina.sh,加入:CATALINA_OPTS="$CATALINA_OPTS -Djav ...

  10. 运维基础——Zabbix 设置Redis监控

    https://blog.csdn.net/xundh/article/details/77604357