<题目链接>

题目大意:

Island 是有一些奇怪的城镇和道路构成的(题目需要,游戏党勿喷),有些城镇之间用双向道路连接起来了,且每条道路有它自己的距离。但是有一些城镇已经被派兵戒严,虽然主角可以逆天改命强闯,但是为了体验该游戏的平衡性,他们只能穿过不超过 K 次被戒严的城镇。
定义“穿过”:从一个戒严的点出发到达任意一个点,都会使得次数加1

现在他们想从 1 号城镇最快的走到 n 号城镇(即出口),现在他们想让你告诉他们最短需要走多少路。
2≤n≤800,1≤m≤4000,1≤k≤10,1≤w≤10^6

解题分析:

本题很明显是一道分成图最短路的题。主要的就是怎么处理"穿过"K个点,我是通过在最短路松弛过程中,判断下一个点是否是封锁点,是的话,就要利用分层图的性质进行松弛。因为题目规定的是穿过k个封锁点,所以我们需要对起点和终点进行处理。如果起点是封锁点,那么k--,如果终点是封锁点k++,因为起点是一定要穿过的,而终点穿不过。

#include <bits/stdc++.h>
using namespace std; #define clr(a,b) memset(a,b,sizeof(a))
#define rep(i,s,t) for(int i=s;i<=t;i++)
typedef long long ll;
const int N = , M = ;
int n,m,k,cnt;
int isgo[N],head[N]; template<typename T>
inline void read(T&x){
x=;int f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar(); }
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
x*=f;
}
struct Edge{
int to,nxt;ll w;
}edge[M<<]; struct Node{
int loc,lev;ll dist;
Node(int _loc=,int _lev=,ll _dist=):loc(_loc),lev(_lev),dist(_dist){}
bool operator < (const Node &tmp)const{ return dist>tmp.dist; }
}node[N][];
int vis[N][]; inline void init(){ cnt=;clr(head,-); }
inline void add(int u,int v,ll w){
edge[++cnt].to=v,edge[cnt].nxt=head[u];
edge[cnt].w=w;head[u]=cnt;
}
void Dij(){
rep(i,,n) rep(j,,k){
node[i][j].loc=i,node[i][j].lev=j;
node[i][j].dist=1e18;vis[i][j]=;
}
priority_queue<Node>q;
node[][].dist=;
q.push(node[][]);
while(!q.empty()){
Node now=q.top();q.pop();
int loc=now.loc,lev=now.lev;
if(vis[loc][lev])continue;
vis[loc][lev]=;
for(int i=head[loc];~i;i=edge[i].nxt){
int v=edge[i].to;ll cost=edge[i].w;
if(!isgo[v] && node[v][lev].dist>node[loc][lev].dist+cost){ //进行同层次建进行正常的松弛
node[v][lev].dist=node[loc][lev].dist+cost;
q.push(Node(v,lev,node[v][lev].dist));
}
if(isgo[v] && (lev+)<=k && node[v][lev+].dist>node[loc][lev].dist+cost){ //不是封锁点的就没有必要利用分层图进行松弛,因为在正常的一层就已经松弛了
node[v][lev+].dist=node[loc][lev].dist+cost;
q.push(Node(v,lev+,node[v][lev].dist));
}
}
}
}
int main(){
init();
read(n);read(m);read(k);
rep(i,,n) read(isgo[i]);
rep(i,,m){
int u,v;ll w;read(u);read(v);read(w);
add(u,v,w);add(v,u,w);
}
if(isgo[])k--;
if(isgo[n])k++;
Dij();
ll ans=1e18;rep(i,,k)ans=min(ans,node[n][i].dist);
printf("%lld\n",ans);
}

Nowcoder contest 370B Rinne Loves Graph 【分层图最短路】的更多相关文章

  1. Nowcoder contest 370H Rinne Loves Dynamic Graph【分层图最短路】

    <题目链接> 题目大意:Rinne 学到了一个新的奇妙的东西叫做动态图,这里的动态图的定义是边权可以随着操作而变动的图.当我们在这个图上经过一条边的时候,这个图上所有边的边权都会发生变动. ...

  2. Nowcoder contest 370F Rinne Loves Edges (简单树形DP) || 【最大流】(模板)

    <题目链接> 题目大意: 一个 $n$ 个节点 $m$ 条边的无向连通图,每条边有一个边权 $w_i$.现在她想玩一个游戏:选取一个 “重要点” S,然后选择性删除一些边,使得原图中所有除 ...

  3. poj3635Full Tank?[分层图最短路]

    Full Tank? Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7248   Accepted: 2338 Descri ...

  4. HDU 5669 线段树优化建图+分层图最短路

    用线段树维护建图,即把用线段树把每个区间都标号了,Tree1中子节点有到达父节点的单向边,Tree2中父节点有到达子节点的单向边. 每次将源插入Tree1,汇插入Tree2,中间用临时节点相连.那么T ...

  5. BZOJ 2763 分层图最短路

    突然发现我不会分层图最短路,写一发. 就是同层中用双向边相连,用单向边连下一层 #include <cstdio> #include <algorithm> #include ...

  6. 【网络流24题】 No.15 汽车加油行驶问题 (分层图最短路i)

    [题意] 问题描述:给定一个 N*N 的方形网格,设其左上角为起点◎, 坐标为( 1, 1), X 轴向右为正, Y轴向下为正, 每个方格边长为 1, 如图所示. 一辆汽车从起点◎出发驶向右下角终点▲ ...

  7. 【网络流24题】 No.14 孤岛营救问题 (分层图最短路)

    [题意] 1944 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛, 营救被敌军俘虏的大兵瑞恩. 瑞恩被关押在一个迷宫里, 迷宫地形复杂, 但幸好麦克得到了迷宫的地形图. 迷宫的外形是 ...

  8. BZOJ_2662_[BeiJing wc2012]冻结_分层图最短路

    BZOJ_2662_[BeiJing wc2012]冻结_分层图最短路 Description “我要成为魔法少女!”     “那么,以灵魂为代价,你希望得到什么?” “我要将有关魔法和奇迹的一切, ...

  9. BZOJ_1579_[Usaco2009 Feb]Revamping Trails 道路升级_分层图最短路

    BZOJ_1579_[Usaco2009 Feb]Revamping Trails 道路升级_分层图最短路 Description 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M ...

随机推荐

  1. Confluence 6 缓存状态

    Confluence 为系统的内部缓存提供了缓存的状态以便于你对缓存的大小的命中率进行跟踪,在必要的情况下,你可以对缓存进行调整,让缓存能够更好的满足你的使用需求.请查看 Performance Tu ...

  2. 第十七单元 Samba服务

    Samba的功能 Samba的安装 Samba服务的启动.停止.重启 Samba服务的配置 Samba服务的主配置文件 samba服务器配置实例 Samba客户端设置 windows客户端 Linux ...

  3. CSS----布局不理解

    正常情况 正常显示 如果往div标签中添加汉字 出现显示(不理解) 解决方式 加上vertical-align:top

  4. 20165314 2016-2017- 3《Java程序设计》第2周学习总结

    20165314 2016-2017- 3<Java程序设计>第2周学习总结 教材学习内容总结 byte<short<char<int<long<float& ...

  5. eclipse创建动态maven项目

    需求表均同springmvc案例 此处只是使用maven 注意,以下所有需要建立在你的eclipse等已经集成配置好了maven了,说白了就是新建项目的时候已经可以找到maven了 没有的话需要安装m ...

  6. css 清除浮动的几种方式

    1.给浮动的元素的父级添加 overflow:hidden;属性 ul>不浮动 添加overflow:hidden; li>浮动 2.给浮动的元素的父级添加after伪类 ul:after ...

  7. Cookie中设置了 HttpOnly,Secure 属性,有效的防止XSS攻击,X-Frame-Options 响应头避免点击劫持

    属性介绍: 1) secure属性当设置为true时,表示创建的 Cookie 会被以安全的形式向服务器传输(ssl),即 只能在 HTTPS 连接中被浏览器传递到服务器端进行会话验证, 如果是 HT ...

  8. 20165323 预备作业3 Linux安装及学习

    一.Linux安装 首先我按照老师所给的步骤下载了VirtualBox 5.2.6和Ubuntu 16.04.3.有流程下载很简单,但是在下载的过程中还是出现了一些问题. 1.VirtualBox 只 ...

  9. mysql 检查一个字符串是不是身份证号

    )CHARSET utf8) ) BEGIN DECLARE flag BOOL DEFAULT FALSE; AND number REGEXP CONCAT('^(([1][1-5])|([2][ ...

  10. MyBatis - 6.Spring整合MyBatis

    1.查看不同MyBatis版本整合Spring时使用的适配包: http://www.mybatis.org/spring/ 2.下载整合适配包 https://github.com/mybatis/ ...