1265 四点共面 

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题

给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共线也算共面)。如果共面,输出"Yes",否则输出"No"。

Input

第1行:一个数T,表示输入的测试数量(1 <= T <= 1000)
第2 - 4T + 1行:每行4行表示一组数据,每行3个数,x, y, z, 表示该点的位置坐标(-1000 <= x, y, z <= 1000)。

Output

输出共T行,如果共面输出"Yes",否则输出"No"。

Input示例

1
1 2 0
2 3 0
4 0 0
0 0 0

Output示例

Yes

题解:A、B、C、D四点共面则三向量满足(AB×AC)*AD=0(AB×AC结果是该平面的法向量);

向量a×向量b=

| i j k |

|a1 b1 c1|

|a2 b2 c2|

=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)

#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
struct node{
int x,y,z;
}p[4];//向量
int main()
{
int T;
scanf("%d",&T);
int a,b,c,x,y,z;
while(T--)
{
scanf("%d%d%d",&a,&b,&c);
for(int i=1;i<=3;i++){
scanf("%d%d%d",&x,&y,&z);
p[i].x=x-a;
p[i].y=y-b;
p[i].z=z-c;
}
x=p[1].y*p[2].z-p[1].z*p[2].y;
y=p[1].z*p[2].x-p[1].x*p[2].z;
z=p[1].x*p[2].y-p[1].y*p[2].x;//printf("%d*%d*%d\n",x,y,z);
if((p[3].x*x+p[3].y*y+p[3].z*z)==0)
printf("Yes\n");
else
printf("No\n");
}
return 0;
}

51Nod 1265 四点共面(计算几何)的更多相关文章

  1. 51nod 1265 四点共面——计算几何

    题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1265 以其中某一点向其它三点连向量,若四点共面,这三个向量定义的平行六面体 ...

  2. 51nod 1265 四点共面【计算几何+线性代数】

    1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共 ...

  3. 51Nod:1265 四点共面

    计算几何 修改隐藏话题 1265 四点共面  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点 ...

  4. 51nod1265 四点共面

    题目链接:51nod 1265 四点共面 四个点构成的三个向量a,b,c共面的充要条件是存在不全为零的实数x,y,z满足x*a+y*b+z*c=0,然后想到线代了.. 其实就是三个向量的混合积为0:( ...

  5. 51Nod-1265 四点共面

    51Nod 1265 : http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1265 1265 四点共面 基准时间限制:1 秒 ...

  6. 51nod1265四点共面

    1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共线也算共面).如 ...

  7. (四点共面) 51nod1265 四点共面

    1265 四点共面 1 秒 131,072 KB 0 分 基础题   给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共线也算共面).如果共面,输出"Ye ...

  8. 51nod--1265 四点共面 (计算几何基础, 点积, 叉积)

    题目: 1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4 ...

  9. 51nod1265判断四点共面

    1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共 ...

随机推荐

  1. C++ 11 snippets , 1

    1->创建7个Thread,跑个非常大的循环.观察CPU void func(string &name) { ;i<0xFFFFFFFF;i++) { //cout << ...

  2. 用户态驱动--UIO机制的实现【转】

    转自:https://blog.csdn.net/u013982161/article/details/51584900 1 uio理论部分   1.1为什么出现了UIO? 硬件设备可以根据功能分为网 ...

  3. CFileFind

    1.CFileFind类的声明文件保存在afx.h头文件中.2.该类的实现的功能:执行本地文件的查找(查找某个具体的文件,查找某类文件x*.x*,查找所有文件*.*)3.CFileFind类是CGop ...

  4. makefile中.PHNOY的用法

    makefile中PHONY的重要性 伪目标是这样一个目标:它不代表一个真正的文件名,在执行make时可以指定这个目标来执行所在规则定义的命令,有时也可以将一个伪目标称为标签.伪目标通过   PHON ...

  5. 发布自己的类库到NuGet

    NuGet是一个为大家所熟知的Visual Studio扩展,通过这个扩展,开发人员可以非常方便地在Visual Studio中安装或更新项目中所需要的第三方组件,同时也可以通过NuGet来安装一些V ...

  6. 在VS解决方案资源管理器中自动定位当前编辑中的文件

    依次点击 [工具]- [选项] - [项目和解决方案]-[常规]- 勾选[在解决方案资源管理器中跟踪活动项]

  7. 004_wireshark专题

    一.常用的wireshark搜索语法 (1) http.request.uri contains "admin/activities" #搜索URL包含"admin/ac ...

  8. MVC、MVP、MVVM模式

    MVC,MVP和MVVM都是常见的软件架构设计模式(Architectural Pattern),它通过分离关注点来改进代码的组织方式.不同于设计模式(Design Pattern),只是为了解决一类 ...

  9. 安装v2ray+SwitchyOmega使用谷歌***

    系统环境:ubuntu18.04 1.安装v2ray 在root用户下执行命令:bash < (curl  -L -s https://install.direct/go.sh) $ cd /e ...

  10. 从外部设置传入Go变量

    前提:必须在build/run时指定 -ldflags="-X main.a=2.0 -X main.b=1" , 且a,b必须是string的变量,不能是常量, 不能是struc ...