51Nod 1265 四点共面(计算几何)
基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共线也算共面)。如果共面,输出"Yes",否则输出"No"。
Input
第1行:一个数T,表示输入的测试数量(1 <= T <= 1000)
第2 - 4T + 1行:每行4行表示一组数据,每行3个数,x, y, z, 表示该点的位置坐标(-1000 <= x, y, z <= 1000)。
Output
输出共T行,如果共面输出"Yes",否则输出"No"。
Input示例
1
1 2 0
2 3 0
4 0 0
0 0 0
Output示例
Yes
题解:A、B、C、D四点共面则三向量满足(AB×AC)*AD=0(AB×AC结果是该平面的法向量);
向量a×向量b=
| i j k |
|a1 b1 c1|
|a2 b2 c2|
=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
struct node{
int x,y,z;
}p[4];//向量
int main()
{
int T;
scanf("%d",&T);
int a,b,c,x,y,z;
while(T--)
{
scanf("%d%d%d",&a,&b,&c);
for(int i=1;i<=3;i++){
scanf("%d%d%d",&x,&y,&z);
p[i].x=x-a;
p[i].y=y-b;
p[i].z=z-c;
}
x=p[1].y*p[2].z-p[1].z*p[2].y;
y=p[1].z*p[2].x-p[1].x*p[2].z;
z=p[1].x*p[2].y-p[1].y*p[2].x;//printf("%d*%d*%d\n",x,y,z);
if((p[3].x*x+p[3].y*y+p[3].z*z)==0)
printf("Yes\n");
else
printf("No\n");
}
return 0;
}
51Nod 1265 四点共面(计算几何)的更多相关文章
- 51nod 1265 四点共面——计算几何
题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1265 以其中某一点向其它三点连向量,若四点共面,这三个向量定义的平行六面体 ...
- 51nod 1265 四点共面【计算几何+线性代数】
1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共 ...
- 51Nod:1265 四点共面
计算几何 修改隐藏话题 1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点 ...
- 51nod1265 四点共面
题目链接:51nod 1265 四点共面 四个点构成的三个向量a,b,c共面的充要条件是存在不全为零的实数x,y,z满足x*a+y*b+z*c=0,然后想到线代了.. 其实就是三个向量的混合积为0:( ...
- 51Nod-1265 四点共面
51Nod 1265 : http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1265 1265 四点共面 基准时间限制:1 秒 ...
- 51nod1265四点共面
1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共线也算共面).如 ...
- (四点共面) 51nod1265 四点共面
1265 四点共面 1 秒 131,072 KB 0 分 基础题 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共线也算共面).如果共面,输出"Ye ...
- 51nod--1265 四点共面 (计算几何基础, 点积, 叉积)
题目: 1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4 ...
- 51nod1265判断四点共面
1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共 ...
随机推荐
- centos设置服务开机启动失败问题
1.安装某服务设置开机启动的时候报错 [root@node1 ~]# systemctl enable lvm2-lvmetad.serviceThe unit files have no [Inst ...
- [转] 一文弄懂神经网络中的反向传播法——BackPropagation
在看CNN和RNN的相关算法TF实现,总感觉有些细枝末节理解不到位,浮在表面.那么就一点点扣细节吧. 这个作者讲方向传播也是没谁了,666- 原文地址:https://www.cnblogs.com/ ...
- Python代码打印出9*9 九九乘法表
九九乘法表 一一 小问题展现技术 1.示例一 for i in range(10): s='' for j in range(1,i+1): s+=str(j)+'*'+str(i)+'='+str( ...
- [转]python3之日期和时间
转自:https://www.cnblogs.com/zhangxinqi/p/7687862.html#_label6 阅读目录 1.python3日期和时间 2.时间元组 3.获取格式化的时间 4 ...
- Shell-find . -type f -name "*.jpg" -print | xargs tar -czvf images.tar.gz
查找所有的 jpg 文件,并且压缩它们: find . -type f -name "*.jpg" -print | xargs tar -czvf images.tar.gz
- MySQL--pymysql模块
import pymysqlaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa连接conn=pymysql.connect(host='127.0.0. ...
- MySQL的数据文件存储
MySQL的数据文件存储 MyISAM引擎分为:静态.动态和压缩MyISAM三种: 静态MyISAM:如果数据表中的各数据列的长度都是预先固定好的,服务器将自动选择这种表类型.因为数据表中每一条记录所 ...
- 修改svn默认端口
Subversion有两种不同的配置方式,一种基于它自带的轻量级服务器svnserve,一种基于非常流行的Web服务器Apache. 根据不同的配置方式,Subversion使用不同的端口对外提供服务 ...
- python第13天
装饰器 装饰器本质上就是一个python函数,他可以让其他函数在不需要做任何改动的前提下,增加额外的功能,装饰器的返回值也是一个函数对象. 装饰器的应用场景:比如插入日志,性能测试,事务处理,缓存等等 ...
- 远程连接阿里云的mysql数据库
第一步 由于mysql版本问题 先尝试打开 sudo vim /etc/mysql/my.cnf 如空,再尝试打开 sudo vim /etc/mysql/mysql.conf.d/mysqld.cn ...