CF1542E2 Abnormal Permutation Pairs (hard version)

good tea。

对于两个排列 \(p,q\),如果 \(p\) 的字典序小于 \(q\),则要么 \(p_1<q_1\),要么存在一个 \(i\) 使得 \(p_{1\sim i}=q_{1\sim i}\) 且 \(p_{i+1}<q_{i+1}\),而后者可以转化为长度为 \(n-i\) 的排列 \(p',q'\) 满足 \(p'_1<q'_1\) 的方案数乘上 \(n^{\underline{i}}\)。因此,我们只需要对于每个 \(i\in[1,n]\) 计算长度为 \(i\) 的排列 \(p,q\) 满足 \(p_1<q_1\) 且 \(p\) 的逆序对个数大于 \(q\) 的方案数。

首先,我们可以枚举 \(p_1\) 和 \(q_1\),这样可以消除字典序的限制。它们对逆序对的贡献就分别为 \(p_1-1\) 和 \(q_1-1\)。如果再枚举 \(q_{2\sim n}\) 的逆序对个数 \(y\),那么符合限制的 \(p_{2\sim n}\) 的逆序对个数 \(x\) 应该满足 \(x+p_1-1>y+q_1-1\)。即 \(x>y+q_1-p_1\)。

根据上面的要求,我们设计 DP:设 \(f_{i,j}\) 为长度为 \(i\),逆序对数量为 \(j\) 的排列个数。转移方程很简单,因为从 \(i-1\to i\) 时只需要考虑 \(i\) 放在哪里:如果它放在倒数第 \(k\) 位,那么它对逆序对个数的贡献就是 \(k-1\)。因此转移方程为 \(f_{i,j}=\sum_{k=\max(0,j-i+1)}^jf_{i-1,k}\),显然可以前缀和优化到 \(n^3\)。

求出 \(f\) 后可以计算答案长度为排列长度为 \(n\) 时的答案了:记 \(s_{i,j}=\sum_{k=1}^j f_{i,k}\),\(m=\binom{n-1}{2}\),则答案为 \(\sum_{p_1=1}^{n-1}\sum_{q_1=p_1+1}^n\sum_{y=0}^{m-(q_1-p_1)}f_{n,y}\times(s_{n,m}-s_{n,y+q_1-p_1})\)。该部分时间复杂度为 \(n^4\),则总时间复杂度 \(n^5\),显然无法承受。

注意到我们不关系 \(p_1,q_1\) 的具体值,只关心 \(q_1-p_1\),因此可以枚举 \(d=q_1-p_1\),那么使 \(q_1-p_1=d\) 的 \(q_1,p_1\) 一共有 \(n-d\) 种情况。上述柿子变为 \(\sum_{d=1}^{n-1}\sum_{y=0}^{m-d}f_{n,y}\times (s_{n,m}-s_{n,y+d})\times (n-d)\)。总时间复杂度为 \(n^4\),还是无法承受。

那么继续拆柿子!此时我们只枚举 \(y\) 对于特定的 \(y\),\(f_{n,y}s_{n,m}(n-d)\) 显然可以把与 \(d\) 无关的 \(f_{n,y}s_{n,m}\) 用乘法分配律提出,那么因为 \(d\) 的上界为 \(t=\min(i-1,m-y)\),所以 \(\sum_{d=1}^t(n-d)\) 显然可以用等差数列求和公式快速求出,即为 \(\frac{(2n-1-t)t}{2}\)。

剩下来的 \(-f_{n,y}s_{n,y+d}(n-d)\) 似乎有些棘手。没关系,先把与 \(d\) 无关的 \(-f_{n,y}\) 提出,注意到 \(s_{n,y+d}(n-d)\) 中的 \(s_{n,y+d}\) 随着 \(d\) 的递增,其前面的系数是递减的。老套路了:把 \(n-d\) 拆成 \((n+y)-(y+d)\)。\(-s_{n,y+d}(y+d)\) 显然可以前缀和 \(sk_{n,j}=-\sum_{k=1}^js_{n,k}\times k\) 预处理出来;\(s_{n,y+d}(n-y)\) 把 \(n-y\) 提出来,预处理 \(s\) 的前缀和即可。

时间复杂度 \(n^3\)。代码中 \(y\) 的枚举上界是 \(m-d-1\) 而不是 \(m-d\),因为 \(y=m-d\) 时 \(s_{n,m}-s_{n,y+d}=s_{n,m}-s_{n,m}=0\),对答案无影响。代码中的 \(r\) 即为计算 \(-f_{n,y}s_{n,y+d}(n-d)\) 时 \(y+d\) 的上界。

#include <bits/stdc++.h>
using namespace std; const int N=505; int n,mod,ans,f[N][N*N/2],s[N][N*N/2],pp[N*N/2],ss[N*N/2]; int main(){
cin>>n>>mod,f[1][0]=s[1][0]=s[1][1]=1;
for(int i=2;i<=n;i++){
for(int j=0;j<=i*(i-1)/2;j++){
f[i][j]=(s[i-1][j]-(j<i?0:s[i-1][j-i])+mod)%mod;
s[i][j]=((j?s[i][j-1]:0)+f[i][j])%mod;
} ans=1ll*ans*i%mod;
for(int j=i*(i-1)/2+1;j<=i*(i+1)/2;j++)s[i][j]=s[i][j-1];
if(i<=3)continue;
int lim=(i-1)*(i-2)/2;
for(int j=0;j<=lim;j++){
tmpp[j]=((j==0?0:tmpp[j-1])-s[i-1][j]*j%mod+mod)%mod,
tmps[j]=((j==0?0:tmps[j-1])+s[i-1][j])%mod;
}
for(int j=0;j+2<=lim;j++){
int times=min(lim-j-1,i-1),c=(i-1+i-times)*times/2,r=min(lim-1,j+i-1);
ans=(ans+1ll*f[i-1][j]%mod*s[i-1][lim]%mod*c)%mod;
ans=(ans-1ll*f[i-1][j]*(pp[r]-pp[j]+(ss[r]-ss[j])*(i+j)%mod)%mod+mod)%mod;
}
}
cout<<ans<<endl;
return 0;
}

CF1542E2 Abnormal Permutation Pairs (hard version)的更多相关文章

  1. Codeforces 1542E2 - Abnormal Permutation Pairs (hard version)(DP)

    upd on 2021.7.7:修了个 typo Codeforces 题目传送门 & 洛谷题目传送门 首先考虑怎样处理"字典序小"这个问题,按照字典序比大小的套路,我们可 ...

  2. 洛谷 P5853 - [USACO19DEC]Tree Depth P(生成函数+背包)

    洛谷题面传送门 神仙题. 首先考虑一个点的深度是什么,注意到对于笛卡尔树而言直接从序列的角度计算一个点的深度是不容易的,因为这样会牵扯到序列中多个元素,需要 fixed 的东西太多,计算起来太复杂了. ...

  3. DP 做题记录 II.

    里面会有一些数据结构优化 DP 的题目(如 XI.),以及普通 DP. *I. P3643 [APIO2016]划艇 题意简述:给出序列 \(a_i,b_i\),求出有多少序列 \(c_i\) 满足 ...

  4. LeetCode解题报告—— Swap Nodes in Pairs & Divide Two Integers & Next Permutation

    1. Swap Nodes in Pairs Given a linked list, swap every two adjacent nodes and return its head. For e ...

  5. error: checker javascript/jshint: can’t parse version string (abnormal termination?)”

    vim 安装插件(k-vim方法 )好后 编辑js文件提示错误 可能是nodejs环境没搭建好 或者版本有误 用nvm安装node 后 需要 source ~/.bashrc 或者重新开一个终端 再运 ...

  6. one recursive approach for 3, hdu 1016 (with an improved version) , permutations, N-Queens puzzle 分类: hdoj 2015-07-19 16:49 86人阅读 评论(0) 收藏

    one recursive approach to solve hdu 1016, list all permutations, solve N-Queens puzzle. reference: t ...

  7. Create side-by-side stereo pairs in the Unity game engine

    Create side-by-side stereo pairs in the Unity game engine Paul BourkeDecember 2008 Sample Island pro ...

  8. ePass1000 Full ActiveX Control Reference Manual Version 2.0

    ePass1000 Full ActiveX Control Reference Manual Version 2.0 Error Code Value Return Status Descripti ...

  9. hdu 2583 permutation

    permutation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

随机推荐

  1. 23.合并k个有序链表

    合并 k 个排序链表,返回合并后的排序链表.请分析和描述算法的复杂度. 示例: 输入: [   1->4->5,   1->3->4,   2->6 ] 输出: 1-&g ...

  2. Kubernetes集群环境搭建全过程

    资源准备以及服务器初始化 所有服务器执行一下脚本进行配置信息初始化: #!/bin/bash cd `dirname $0` # 关闭selinux setenforce 0 sed -i '/SEL ...

  3. HDMI之TMDS通道

    HDMI标准继续沿用了和DVI相同的,由Silicon Image公司发明的TMDS(Time Minimized Differential Signal)最小化传输差分信号传输技术.TMDS是一种微 ...

  4. 链式A+B 牛客网 程序员面试金典 C++ Python

    链式A+B 牛客网 程序员面试金典 C++ Python 题目描述 有两个用链表表示的整数,每个结点包含一个数位.这些数位是反向存放的,也就是个位排在链表的首部.编写函数对这两个整数求和,并用链表形式 ...

  5. 第06课 OpenGL 纹理映射

    纹理映射: 在这一课里,我将教会你如何把纹理映射到立方体的六个面. 学习 texture map 纹理映射(贴图)有很多好处.比方说您想让一颗导弹飞过屏幕.根据前几课的知识,我们最可行的办法可能是很多 ...

  6. webRTC中语音降噪模块ANS细节详解(三)

    上篇(webRTC中语音降噪模块ANS细节详解(二))讲了ANS的处理流程和语音在时域和频域的相互转换.本篇开始讲语音降噪的核心部分,首先讲噪声的初始估计以及基于估计出来的噪声算先验信噪比和后验信噪比 ...

  7. Vue面试题01

    说出vue常用的指令: v-text,  v-html,  v-bind,  v-for,  v-if,  v-else,  v-else-if,   v-show,    v-on, 谈谈你对MVC ...

  8. Centos 7 局域网 yum 源搭建

    一.需求及实现方式介绍: 需求:现在各个软件版本更新迭代很快,在我们部署一套集群(比如:openstack)后,如果过一段时间想扩展集群时发现软件版本早已迭代更新,安装后导致和现有环境或多或少不兼容, ...

  9. DeWeb和WebXone的区别

    DeWeb和WebXone的区别 相同点: 1 两者为同一开发者研发.QQ:45300355,碧树西风 2 都是为了解决Delphi开发Web的问题 区别: 1 WebXone采用的ActiveX/N ...

  10. 几十行js实现很炫的canvas交互特效

    几十行js实现很炫的canvas交互特效 废话不多说,先上效果图! 本篇文章的示例代码都是抄的一个叫Franks的老外在yutube上的一个教学视频,他还出了很多关于canvas的视频,十分值得学习, ...