洛谷题面传送门

一道究极恶心的毒瘤六合一题,式子推了我满满两面 A4 纸……

首先我们可以将式子拆成:

\[ans=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\prod\limits_{k=1}^C(\dfrac{ij}{\gcd(i,j)\gcd(i,j)})^{f(type)}
\]

也就是说我们需要算出以下四项式子的值:

\[\prod\limits_{i=1}^A\prod\limits_{j=1}^B\prod\limits_{k=1}^Ci^{f(type)}
\]
\[\prod\limits_{i=1}^A\prod\limits_{j=1}^B\prod\limits_{k=1}^Cj^{f(type)}
\]
\[\prod\limits_{i=1}^A\prod\limits_{j=1}^B\prod\limits_{k=1}^C(\dfrac{1}{\gcd(i,j)})^{f(type)}
\]
\[\prod\limits_{i=1}^A\prod\limits_{j=1}^B\prod\limits_{k=1}^C(\dfrac{1}{\gcd(i,k)})^{f(type)}
\]

显然前两项与后两项是等价的,因此我们只需算出:

\[f_1(type)=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\prod\limits_{k=1}^Ci^{f(type)}
\]

\[f_2(type)=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\prod\limits_{k=1}^C(\gcd(i,j))^{f(type)}
\]

即可求出答案。


考虑对 \(type\) 进行分类讨论,首先是 \(type=0\),那么

\[f_1(0)=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\prod\limits_{k=1}^Ci
\]

考虑每个 \(i\) 的贡献,稍微想想即可得到:

\[f_1(0)=(A!)^{BC}
\]

然后是 \(f_2(0)\),套路地枚举 \(\gcd(i,j)\) 有

\[\begin{aligned}
f_2(0)&=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\prod\limits_{k=1}^C\gcd(i,j)\\
&=(\prod\limits_{d=1}^{\min(A,B)}d^{\sum\limits_{i=1}^A\sum\limits_{j=1}^B[\gcd(i,j)=d]})^C\\
&=(\prod\limits_{d=1}^{\min(A,B)}d^{\sum\limits_{i=1}^{A/d}\sum\limits_{j=1}^{B/d}[\gcd(i,j)=1]})^C\\
&=(\prod\limits_{d=1}^{\min(A,B)}d^{\sum\limits_{p}\mu(p)\lfloor\frac{A}{dp}\rfloor\lfloor\frac{B}{dp}\rfloor})^C\\
\end{aligned}
\]

最右边那个 \(k\) 次方显然可以忽略掉不管它,最后求个快速幂即可。考虑对里面的 \(dp\) 进行二维的整除分块,那么答案的式子可以化为:

\[\begin{aligned}
f_2(0)=(\prod\limits_{dp}g_1(dp)^{\lfloor\frac{A}{dp}\rfloor\lfloor\frac{B}{dp}\rfloor})^C
\end{aligned}
\]

其中

\[g_1(x)=\prod\limits_{d·p=x}d^{\mu(p)}
\]

考虑整除分块,对于一段区间 \([L,R]\),满足 \(\forall x\in[L,R]\) 均有 \(\lfloor\dfrac{A}{x}\rfloor=\lfloor\dfrac{A}{L}\rfloor,\lfloor\dfrac{B}{x}\rfloor=\lfloor\dfrac{B}{L}\rfloor\),我们这样计算它们的贡献:

\[\prod\limits_{i=L}^R(g_1(i)^{\lfloor\frac{A}{i}\rfloor\lfloor\frac{B}{i}\rfloor})^C=(\prod\limits_{i=L}^Rg_1(i))^{\lfloor\frac{A}{i}\rfloor\lfloor\frac{B}{i}\rfloor·C}
\]

预处理前缀积即可 \(\mathcal O(1)\) 计算,时间复杂度 \(\mathcal O(\log n\sqrt{n})\)。


接下来是 \(type=1\) 的情况,个人感觉与 \(type=0\) 的情况大差不差,毕竟指数上都只与 \(i,j,k\) 本身而不涉及到它们的 \(\gcd\) 之类,只不过指数上枚举变量的次数稍微高了一点点,导致情况较于 \(type=0\) 略有一点点繁琐。

首先是 \(f_1(1)\)

\[f_1(1)=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\prod\limits_{k=1}^Ci^{ijk}
\]

还是考虑每个 \(i\) 的贡献被累计了多少次:

\[\begin{aligned}
f_1(0)&=(A!)^{\sum\limits_{j=1}^B\sum\limits_{k=1}^Cjk}\\
&=(A!)^{\frac{B(B+1)}{2}·\frac{C(C+1)}{2}}
\end{aligned}
\]

一波快速幂带走。

其次是 \(f_2(1)\)

\[\begin{aligned}
f_2(1)&=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\prod\limits_{k=1}^C\gcd(i,j)^{ijk}\\
&=(\prod\limits_{d=1}^{\min(A,B)}d^{\sum\limits_{i=1}^A\sum\limits_{j=1}^Bij[\gcd(i,j)=d]})^{\sum\limits_{k=1}^Ck}\\
&=(\prod\limits_{d=1}^{\min(A,B)}d^{\sum\limits_{i=1}^{A/d}\sum\limits_{j=1}^{B/d}ijd^2[\gcd(i,j)=1]})^{\frac{C(C+1)}{2}}\\
&=(\prod\limits_{d=1}^{\min(A,B)}d^{\sum\limits_{p}\mu(p)d^2p^2·s(\lfloor\frac{A}{dp}\rfloor)s(\lfloor\frac{B}{dp}\rfloor)})^{\frac{C(C+1)}{2}}\\
\end{aligned}
\]

其中 \(s(i)=\dfrac{i(i+1)}{2}\)

那么我们还是枚举 \(dp\),按照 \(f_2(0)\) 的套路设一个 \(g_2(x)\),定义如下:

\[g_2(x)=\prod\limits_{d·p=x}d^{d^2p^2\mu(p)}
\]

那么考虑对 \(dp\) 进行整除分块,那么

\[f_2(1)=(\prod\limits_{dp=1}^{\min(A,B)}g_2(dp)^{s(\lfloor\frac{A}{dp}\rfloor)s(\lfloor\frac{B}{dp}\rfloor)})^{\frac{C(C+1)}{2}}
\]

预处理 \(g_2(dp)\) 的前缀积然后对 \(dp\) 整除分块即可。


最后是 \(type=2\) 的情况

先考虑 \(f_1(2)\)

\[f_1(2)=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\prod\limits_{k=1}^Ci^{\gcd(i,j,k)}
\]

上来先把 \(\gcd\) 反演掉:

\[\begin{aligned}
f_1(2)&=\prod\limits_{d=1}^{\min(A,B,C)}\prod\limits_{i=1}^{\lfloor\frac{A}{d}\rfloor}(id)^{d·\sum\limits_{j=1}^{\lfloor\frac{B}{d}\rfloor}\sum\limits_{k=1}^{\lfloor\frac{C}{d}\rfloor}[\gcd(i,j,k)=1]}\\
&=\prod\limits_{d=1}^{\min(A,B,C)}\prod\limits_{i=1}^{\lfloor\frac{A}{d}\rfloor}(id)^{d·\sum\limits_{p\mid i}\mu(p)\lfloor\frac{B}{dp}\rfloor\lfloor\frac{C}{dp}\rfloor}
\end{aligned}
\]

把 \(p\) 提到外面来

\[\begin{aligned}
f_1(2)&=\prod\limits_{d=1}^{\min(A,B,C)}\prod\limits_{p}(\prod\limits_{i\in[1,\lfloor\frac{A}{d}\rfloor]\&p\mid i}(id)^{d·\mu(p)})^{\lfloor\frac{B}{dp}\rfloor\lfloor\frac{C}{dp}\rfloor}
\end{aligned}
\]

然后按照套路枚举 \(\dfrac{i}{p}\)

\[\begin{aligned}
f_1(2)&=\prod\limits_{d=1}^{\min(A,B,C)}\prod\limits_{p}(\prod\limits_{i=1}^{\lfloor\frac{A}{dp}\rfloor}(idp)^{d·\mu(p)})^{\lfloor\frac{B}{dp}\rfloor\lfloor\frac{C}{dp}\rfloor}
\end{aligned}
\]

然后枚举 \(dp\),根据 \(\mu*i=\varphi\) 可知 \(\sum\limits_{d·p=x}d·\mu(p)=\varphi(x)\),于是

\[f_1(2)=\prod\limits_{x=1}^{\min(A,B,C)}(\prod\limits_{i=1}^{\lfloor\frac{A}{x}\rfloor}(ix)^{\varphi(x)})^{\lfloor\frac{B}{x}\rfloor\lfloor\frac{C}{x}\rfloor}
\]

外面的东西显然整除分块一下就好了,里面的东西

\[\prod\limits_{i=1}^{\lfloor\frac{A}{x}\rfloor}(ix)^{\varphi(x)}
\]

显然等于

\[\begin{aligned}
&\prod\limits_{i=1}^{\lfloor\frac{A}{x}\rfloor}i^{\varphi(x)}·x^{\varphi(x)}\\
=&((\lfloor\dfrac{A}{x}\rfloor)!)^{\varphi(x)}·(x^{\varphi(x)})^{\lfloor\frac{A}{x}\rfloor}
\end{aligned}
\]

然后套路地预处理 \(g_3=x^{\varphi(x)}\) 的前缀积,以及 \(\varphi(x)\) 的前缀和即可在整除分块的过程中 \(\mathcal O(1)\) 求出式子的值,注意 \(\varphi(x)\) 的前缀和应 \(\bmod(MOD-1)\) 而不是 \(\bmod MOD\),因为 \(\varphi(x)\) 的前缀和作用在指数上。

时间复杂度 \(\sqrt{n}\log n\)

然后是最精神污染的一个式子:

\[f_2(2)=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\prod\limits_{k=1}^C(\gcd(i,j))^{\gcd(i,j,k)}
\]

按照 P1587 的套路,碰到两个 \(\gcd\) 咱们最好不要莽,要一个个反演,因此考虑先反演下面这个 \(\gcd\):

\[\begin{aligned}
f_2(2)&=\prod\limits_{d=1}^{\min(A,B)}d^{\sum\limits_{i=1}^{\lfloor\frac{A}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{B}{d}\rfloor}[\gcd(i,j)=1]\sum\limits_{k=1}^C\gcd(d,k)}\\
&=\prod\limits_{d=1}^{\min(A,B)}d^{\sum\limits_{p}^{\lfloor\frac{\min(A,B)}{d}\rfloor}\mu(p)\lfloor\frac{A}{dp}\rfloor\lfloor\frac{B}{dp}\rfloor\sum\limits_{k=1}^C\gcd(d,k)}
\end{aligned}
\]

发现后面有个 \(\sum\limits_{k=1}^C\gcd(d,k)\),考虑对这个东西单独推个式子:

\[\begin{aligned}
g_4(d,C)&=\sum\limits_{k=1}^C\gcd(d,k)\\
&=\sum\limits_{x\mid d}x·\sum\limits_{i=1}^{\lfloor\frac{C}{x}\rfloor}[i\perp\dfrac{d}{x}]\\
&=\sum\limits_{x\mid d}x·\sum\limits_{y\mid\frac{d}{x}}\mu(y)\lfloor\dfrac{C}{xy}\rfloor
\end{aligned}
\]

套路地枚举 \(xy=T\) 可得:

\[g_4(d,C)=\sum\limits_{T\mid d}\lfloor\dfrac{C}{T}\rfloor\sum\limits_{x\mid T}x\mu(\dfrac{T}{x})
\]

这已经是本题中第二次看到这个式子了:

\[\sum\limits_{x\mid T}x\mu(\dfrac{T}{x})=\varphi(T)
\]

于是

\[g_4(d,C)=\sum\limits_{T\mid d}\lfloor\dfrac{C}{T}\rfloor\varphi(T)
\]

带回去

\[f_2(2)=\prod\limits_{d=1}^{\min(A,B)}d^{\sum\limits_{p}^{\lfloor\frac{\min(A,B)}{d}\rfloor}\mu(p)\lfloor\frac{A}{dp}\rfloor\lfloor\frac{B}{dp}\rfloor\sum\limits_{T\mid d}\lfloor\frac{C}{T}\rfloor\varphi(T)}
\]

按照这里总结出来的套路,看到先枚举 \(i\) 再枚举 \(j\mid i\) 的求和/积式我们可以考虑交换求和/积的顺序,先枚举 \(j\) 再枚举 \(i\),这样会出现下取整,就可以整除分块了。

因此考虑先枚举 \(T\) 再枚举 \(d\),有:

\[f_2(2)=\prod\limits_{T=1}^{\min(A,B)}\prod\limits_{d=1}^{\lfloor\frac{\min(A,B)}{T}\rfloor}(dT)^{\sum\limits_{p}\mu(p)\lfloor\frac{A}{dTp}\rfloor\lfloor\frac{B}{dTp}\rfloor\lfloor\frac{C}{T}\rfloor\varphi(T)}
\]

然后考虑拆开来:

\[f_2(2)=\prod\limits_{T=1}^{\min(A,B)}(T^{\varphi(T)\lfloor\frac{C}{T}\rfloor})^{\sum\limits_{d}\sum\limits_{p}\mu(p)\lfloor\frac{A}{dTp}\rfloor\lfloor\frac{B}{dTp}\rfloor}·\prod\limits_{d=1}^{\lfloor\frac{\min(A,B)}{T}\rfloor}(d^{\sum\limits_{p}\mu(p)\lfloor\frac{A}{dTp}\rfloor\lfloor\frac{B}{dTp}\rfloor})^{\varphi(T)\lfloor\frac{C}{T}\rfloor}
\]

先考虑前面的式子:

\[(T^{\varphi(T)\lfloor\frac{C}{T}\rfloor})^{\sum\limits_{d}\sum\limits_{p}\mu(p)\lfloor\frac{A}{dTp}\rfloor\lfloor\frac{B}{dTp}\rfloor}
\]

考虑枚举 \(dp=x\),那么:

\[\begin{aligned}
\text{原式}&=(T^{\varphi(T)\lfloor\frac{C}{T}\rfloor})^{\sum\limits_{x}\sum\limits_{p\mid x}\mu(p)\lfloor\frac{A}{Tx}\rfloor\lfloor\frac{B}{Tx}\rfloor}\\
&=(T^{\varphi(T)\lfloor\frac{C}{T}\rfloor})^{\epsilon(x)\lfloor\frac{A}{Tx}\rfloor\lfloor\frac{B}{Tx}\rfloor}\\
&=(T^{\varphi(T)\lfloor\frac{C}{T}\rfloor})^{\lfloor\frac{A}{T}\rfloor\lfloor\frac{B}{T}\rfloor}
\end{aligned}
\]

对 \(T\) 整除分块一下,预处理 \(\varphi(T)\) 的前缀和即可 \(\mathcal O(1)\) 算出。


然后是后面的式子(胜利就在眼前!)

\[\prod\limits_{T=1}^{\min(A,B)}\prod\limits_{d=1}^{\lfloor\frac{\min(A,B)}{T}\rfloor}(d^{\sum\limits_{p}\mu(p)\lfloor\frac{A}{dTp}\rfloor\lfloor\frac{B}{dTp}\rfloor})^{\varphi(T)\lfloor\frac{C}{T}\rfloor}
\]

还是对 \(T\) 整除分块,然后枚举 \(dp=x\),那么上面的式子可以写成:

\[\prod\limits_{T=1}^{\min(A,B)}\prod\limits_{x=1}^{\lfloor\frac{\min(A,B)}{T}\rfloor}((\prod\limits_{d\mid x}d^{\mu(p)})^{\lfloor\frac{A}{Tx}\rfloor\lfloor\frac{B}{Tx}\rfloor})^{\varphi(T)\lfloor\frac{C}{T}\rfloor}
\]

发现最里面的括号的东西就是在求 \(f_2(0)\) 时用到的 \(g_1(x)\),那么我们再套一个对 \(x\) 的整除分块即可。

根据整除分块里再套一个整除分块复杂度是 \(\sum\limits_{x,\exists k,s.t.\lfloor\frac{n}{k}\rfloor=x}\sqrt{x}=n^{0.75}\) 可知这一部分复杂度为 \(n^{0.75}\log n\)

于是这题就做完了,时间复杂度 \(n\log n+Tn^{0.75}\log n\)。


关于此题的常数问题,由于取模运算较多,可以使用快速取模优化常数,具体可见 chenxia25 神仙的这篇博客

const int MAXV=1e5;
ll mod;
int pr[MAXV/5+5],prcnt=0,vis[MAXV+5],mu[MAXV+5],smu[MAXV+5],phi[MAXV+5];
int fac[MAXV+5],prd[MAXV+5],prd_inv[MAXV+5],prd_sq[MAXV+5],prd_sq_inv[MAXV+5];
int pre_ii[MAXV+5],inv_pre_ii[MAXV+5],pre_mul[MAXV+5],inv_pre_mul[MAXV+5];
int inv[MAXV+5],prd_phi[MAXV+5],prd_phi_inv[MAXV+5];
int sphi[MAXV+5];
__int128_t _base1=1,_base2=1;
inline int mol1(__int128_t x){return x-mod*(_base1*x>>64);}
inline int mol2(__int128_t x){return x-(mod-1)*(_base2*x>>64);}
int qpow(int x,int e){
if(e<0) e+=mod-1;int ret=1;
for(;e;e>>=1,x=mol1(1ll*x*x)) if(e&1) ret=mol1(1ll*ret*x);
return ret;
}
int work(int x,int y){return (!y)?1:((~y)?x:inv[x]);}
void sieve(int n){
for(int i=(inv[0]=inv[1]=1)+1;i<=n;i++) inv[i]=mol1(1ll*inv[mod%i]*(mod-mod/i));
mu[1]=phi[1]=1;
for(int i=(fac[0]=1);i<=n;i++) fac[i]=mol1(1ll*fac[i-1]*i);
for(int i=2;i<=n;i++){
if(!vis[i]) mu[i]=-1,pr[++prcnt]=i,phi[i]=i-1;
for(int j=1;j<=prcnt&&pr[j]*i<=n;j++){
vis[pr[j]*i]=1;
if(i%pr[j]==0){phi[i*pr[j]]=phi[i]*pr[j];break;}
mu[i*pr[j]]=-mu[i];phi[i*pr[j]]=phi[i]*phi[pr[j]];
}
}
for(int i=1;i<=n;i++) smu[i]=smu[i-1]+mu[i];
for(int i=0;i<=n;i++) prd[i]=prd_sq[i]=1;
for(int i=1;i<=n;i++) for(int j=i;j<=n;j+=i) prd[j]=mol1(1ll*prd[j]*work(i,mu[j/i]));
for(int i=1;i<=n;i++) prd[i]=mol1(1ll*prd[i-1]*prd[i]);
for(int i=0;i<=n;i++) prd_inv[i]=qpow(prd[i],-1);
for(int i=1;i<=n;i++) for(int j=i;j<=n;j+=i)
prd_sq[j]=mol1(1ll*prd_sq[j]*
qpow(qpow(i,mol2(1ll*i*i)),mol2(1ll*mu[j/i]*(j/i)*(j/i))));
for(int i=1;i<=n;i++) prd_sq[i]=mol1(1ll*prd_sq[i-1]*prd_sq[i]);
for(int i=0;i<=n;i++) prd_sq_inv[i]=qpow(prd_sq[i],-1);
pre_ii[0]=1;for(int i=1;i<=n;i++) pre_ii[i]=mol1(1ll*pre_ii[i-1]*qpow(i,i));
for(int i=0;i<=n;i++) inv_pre_ii[i]=qpow(pre_ii[i],-1);
pre_mul[0]=1;for(int i=1;i<=n;i++) pre_mul[i]=mol1(1ll*pre_mul[i-1]*work(i,mu[i]));
for(int i=0;i<=n;i++) inv_pre_mul[i]=qpow(pre_mul[i],-1);
prd_phi[0]=1;for(int i=1;i<=n;i++) prd_phi[i]=mol1(1ll*prd_phi[i-1]*qpow(i,phi[i]));
for(int i=0;i<=n;i++) prd_phi_inv[i]=qpow(prd_phi[i],-1);
for(int i=1;i<=n;i++) sphi[i]=mol2(sphi[i-1]+phi[i]);
}
int calc1(int x,int y){
int res=1;
for(int l=1,r;l<=min(x,y);l=r+1){
r=min(x/(x/l),y/(y/l));
res=1ll*res*qpow(1ll*prd[r]*prd_inv[l-1]%mod,1ll*(x/l)*(y/l)%(mod-1))%mod;
}
return res;
}
int solve1(int a,int b,int c){
int res=1ll*qpow(calc1(a,b),-c)*qpow(calc1(a,c),-b)%mod;
res=1ll*res*qpow(fac[a],1ll*b*c%(mod-1))%mod;
res=1ll*res*qpow(fac[b],1ll*a*c%(mod-1))%mod;
return res;
}
ll get(int x){return mol2(1ll*x*(x+1)/2);}
int calc2(int x,int y){
int res=1;
for(int l=1,r;l<=min(x,y);l=r+1){
r=min(x/(x/l),y/(y/l));
res=1ll*res*qpow(1ll*prd_sq[r]*prd_sq_inv[l-1]%mod,
1ll*get(x/l)*get(y/l)%(mod-1))%mod;
}
return res;
}
int solve2(int a,int b,int c){
int res=1;
res=1ll*res*qpow(pre_ii[a],(1ll*b*(b+1)>>1)%(mod-1))%mod;
res=1ll*res*qpow(pre_ii[b],(1ll*a*(a+1)>>1)%(mod-1))%mod;
res=1ll*res*qpow(calc2(a,b),mod-2)%mod;
res=qpow(res,(1ll*c*(c+1)>>1)%(mod-1));
res=1ll*res*qpow(calc2(a,c),-(1ll*b*(b+1)>>1)%(mod-1))%mod;
return res;
}
int calc3(int x,int y,int z){
int res=1;
for(int l=1,r;l<=x;l=r+1){
r=1e9;
if(x/l) chkmin(r,x/(x/l));
if(y/l) chkmin(r,y/(y/l));
if(z/l) chkmin(r,z/(z/l));
int mul=qpow(1ll*prd_phi[r]*prd_phi_inv[l-1]%mod,x/l);
mul=1ll*mul*qpow(fac[x/l],sphi[r]-sphi[l-1])%mod;
res=1ll*res*qpow(mul,1ll*(y/l)*(z/l)%(mod-1))%mod;
} return res;
}
int calc4(int x,int y,int z){
int res=1;
for(int l=1,r;l<=min(x,y);l=r+1){
r=1e9;
if(x/l) chkmin(r,x/(x/l));
if(y/l) chkmin(r,y/(y/l));
if(z/l) chkmin(r,z/(z/l));
res=1ll*res*qpow(1ll*prd_phi[r]*prd_phi_inv[l-1]%mod,1ll*(x/l)*(y/l)*(z/l)%(mod-1))%mod;
int X=x/l,Y=y/l,Z=z/l,sm=1ll*Z*(sphi[r]-sphi[l-1])%(mod-1);
for(int L=1,R;L<=min(X,Y);L=R+1){
R=1e9;
if(X/L) chkmin(R,X/(X/L));
if(Y/L) chkmin(R,Y/(Y/L));
res=1ll*res*qpow(1ll*prd[R]*prd_inv[L-1]%mod,1ll*(X/L)*(Y/L)*sm%(mod-1))%mod;
}
}
return res;
}
int solve3(int x,int y,int z){
return 1ll*calc3(x,y,z)*calc3(y,x,z)%mod*
qpow(calc4(x,y,z),-1)%mod*qpow(calc4(x,z,y),-1)%mod;
}
int main(){
int qu;scanf("%d%lld",&qu,&mod);
_base1=(_base1<<64)/mod;_base2=(_base2<<64)/(mod-1);
sieve(MAXV);
while(qu--){
int a,b,c;scanf("%d%d%d",&a,&b,&c);
printf("%d %d %d\n",solve1(a,b,c),solve2(a,b,c),solve3(a,b,c));
}
return 0;
}

洛谷 P5518 - [MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题(莫比乌斯反演+整除分块)的更多相关文章

  1. P5518 [MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题

    瞎扯 建议在阅读题解之前欣赏这首由普莉兹姆利巴姐妹带来的的合奏. Q:你参加省选吗?不是说好了考完 NOIP 就退吗. A:对啊. Q:那你学这玩意干啥? A:对啊,我学这玩意干啥? 写这题的动机? ...

  2. [SDOI2017]数字表格 & [MtOI2019]幽灵乐团

    P3704 [SDOI2017]数字表格 首先根据题意写出答案的表达式 \[\large\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)} \] 按常规套路改为枚举 \(d ...

  3. 题解-MtOI2019 幽灵乐团

    题面 MtOI2019 幽灵乐团 给定 \(p\),\(Cnt\) 组测试数据,每次给 \(a,b,c\),求 \[\prod_{i=1}^a\prod_{j=1}^b\prod_{k=1}^c\le ...

  4. 【洛谷2257/BZOJ2820】YY的GCD(数论/莫比乌斯函数)

    题目: 洛谷2257 预备知识:莫比乌斯定理(懵逼乌斯定理) \(\mu*1=\epsilon\)(证bu明hui略zheng) 其中(我校学长把\(\epsilon(x)\)叫单位函数但是为什么我没 ...

  5. 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...

  6. 洛谷 P6222 - 「P6156 简单题」加强版(莫比乌斯反演)

    原版传送门 & 加强版传送门 题意: \(T\) 组数据,求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^n(i+j)^k\mu^2(\gcd(i,j))\g ...

  7. 洛谷 P6478 - [NOI Online #2 提高组] 游戏(二项式反演+树形 dp)

    题面传送门 没错这就是我 boom0 的那场 NOIOL 的 T3 一年前,我在 NOIOL #2 的赛场上折戟沉沙,一年后,我从倒下的地方爬起. 我成功了,我不再是从前那个我了 我们首先假设 A 拥 ...

  8. [MtOI2019]幽灵乐团

    题目 一个很暴力的辣鸡做法 考虑到两个数的\(\gcd\)是所有质数次幂取\(\min\),两个数的\(\rm lcm\)是所有质数次幂取\(\max\),于是最后的答案一定是\(\prod p_i^ ...

  9. 【洛谷】P1754 球迷购票问题(基础dp)

    题目背景 盛况空前的足球赛即将举行.球赛门票售票处排起了球迷购票长龙. 按售票处规定,每位购票者限购一张门票,且每张票售价为50元.在排成长龙的球迷中有N个人手持面值50元的钱币,另有N个人手持面值1 ...

随机推荐

  1. SpringCloud 2020.0.4 系列之Eureka

    1. 概述 老话说的好:遇见困难,首先要做的是积极的想解决办法,而不是先去泄气.抱怨或生气. 言归正传,微服务是当今非常流行的一种架构方式,其中 SpringCloud 是我们常用的一种微服务框架. ...

  2. Go 语言实现 gRPC 的发布订阅模式,REST 接口和超时控制

    原文链接: 测试小姐姐问我 gRPC 怎么用,我直接把这篇文章甩给了她 上篇文章 gRPC,爆赞 直接爆了,内容主要包括:简单的 gRPC 服务,流处理模式,验证器,Token 认证和证书认证. 在多 ...

  3. PCB中,Solder Mask与Paste Mask有啥区别呢?

    Solder Mask Layers: 即阻焊层.顾名思义,他的存在是为了防止PCB在过波峰焊的时候,不应涂锡的地方粘上锡. 可以简单理解为一个洞,该区域(洞)以外的地方,都不允许有焊锡,即只能涂绿油 ...

  4. 单片机STM32学习笔记之寄存器映射详解

    我们知道,存储器本身没有地址,给存储器分配地址的过程叫存储器映射,那什么叫寄存器映射?寄存器到底是什么? 在存储器Block2 这块区域,设计的是片上外设,它们以四个字节为一个单元,共32bit,每一 ...

  5. 运用Tomcat创建第一个web项目

    一.了解Web服务器软件 在部署tomcat前,先说一说web服务器软件是用来干什么的?简单来说,就是web容器,可以部署web项目,让用户通过浏览器来访问这些项目. 1.常见的javaweb服务器软 ...

  6. fd定时器--timerfd学习

    定时器 可以用系统定时器信号SIGALARM 最近工作需要于是又发现了一个新玩意timerfd配合epoll使用. man 手册看一下 TIMERFD_CREATE(2) Linux Programm ...

  7. 恶意代码分析实战五:OllyDebug动态结合

    目录 恶意代码分析实战五:OllyDebug动态结合 OllyDebug界面介绍 OllyDebug载入程序方法 OllyDebug地址跳转 OllyDebug下断点 OllyDebug单步执行 Ol ...

  8. 面试官:熟悉JS中的new吗?能手写实现吗?

    目录 1 new 运算符简介 2 new 究竟干了什么事 3 模拟实现 new 运算符 4 补充 预备知识: 了解原型和原型链 了解this绑定 1 new 运算符简介 MDN文档:new 运算符创建 ...

  9. 『动善时』JMeter基础 — 56、JMeter使用命令行模式生成HTML测试报告

    目录 1.自动生成HTML图形化报告 2.使用已有的测试结果文件生成HTML报告 3.HTML图形化报告内容详解 (1)Dashboard页面:(重点查看) (2)Charts页面:(辅助分析) 4. ...

  10. 记一次CTF比赛过程与解题思路-MISC部分

    前言 最近好久没更新博客和公众号了,有朋友问是不是在憋大招,但我不好意思说其实是因为最近一段时间太懒了,一直在当咸鱼- 意识到很久没更新这个问题,我是想写点什么的,但好像一直当咸鱼也没啥可分享的,最近 ...