GPU上的基本线性代数

cuBLAS库提供了基本线性代数子例程(BLAS)的GPU加速实现。cuBLAS通过针对NVIDIA GPU进行了高度优化的嵌入式行业标准BLAS API来加速AI和HPC应用程序。cuBLAS库包含用于批处理操作,跨多个GPU的执行以及混合和低精度执行的扩展。使用cuBLAS,应用程序会自动受益于常规性能的改进和新的GPU架构。cuBLAS库包含在NVIDIA HPC SDKCUDA Toolkit中

cuBLAS多GPU扩展

cuBLASMg提供了最新的多GPU矩阵矩阵乘法,每个矩阵都可以2D块循环的方式在多个设备之间分配。cuBLASMg当前是CUDA数学库早期访问计划的一部分。

cuBLAS性能

cuBLAS库针对NVIDIA GPU的性能进行了高度优化,并利用张量内核加速了低精度和混合精度矩阵乘法。

cuBLAS的主要功能

  • 全面支持所有152个标准BLAS例程
  • 支持半精度和整数矩阵乘法
  • 针对Volta和Turing张量Cores进行了优化的GEMM和GEMM扩展
  • 针对各种深度学习模型中使用的大小调整了GEMM性能
  • 支持CUDA流以进行并发操作

GPU上的基本线性代数的更多相关文章

  1. NVIDIA GPU上的Tensor线性代数

    NVIDIA GPU上的Tensor线性代数 cuTENSOR库是同类中第一个GPU加速的张量线性代数库,提供张量收缩,归约和逐元素运算.cuTENSOR用于加速在深度学习训练和推理,计算机视觉,量子 ...

  2. GPU上稀疏矩阵的基本线性代数

    GPU上稀疏矩阵的基本线性代数 cuSPARSE库为稀疏矩阵提供了GPU加速的基本线性代数子例程,这些子例程的执行速度明显快于仅CPU替代方法.提供了可用于构建GPU加速求解器的功能.cuSPARSE ...

  3. GPU上的快速光谱图分区

    GPU上的快速光谱图分区 图形是用于对物理,生物,社会和信息系统中许多类型的关系和过程进行建模的数学结构.用于解决各种高性能计算和数据分析问题.对于网络分析,基因组学,社交网络分析和其他领域,大规模图 ...

  4. pytorch在CPU和GPU上加载模型

    pytorch允许把在GPU上训练的模型加载到CPU上,也允许把在CPU上训练的模型加载到GPU上.CPU->CPU,GPU->GPU torch.load('gen_500000.pkl ...

  5. 在GPU上训练数据

    在GPU上训练数据 模型搬到GPU上 数据搬到GPU上 损失函数计算搬到GPU上

  6. linux GPU上多个buffer间的同步 —— ww_mutex、dma-fence的使用 笔记

    原文链接:https://www.cnblogs.com/yaongtime/p/14111134.html   WW-Mutexes   在GPU中一次Render可能会涉及到对多个buffer的引 ...

  7. TVM 优化 ARM GPU 上的移动深度学习

    TVM 优化 ARM GPU 上的移动深度学习 随着深度学习的巨大成功,将深度神经网络部署到移动设备的需求正在迅速增长.与桌面平台上所做的类似,在移动设备中使用 GPU 既有利于推理速度,也有利于能源 ...

  8. TVM在ARM GPU上优化移动深度学习

    TVM在ARM GPU上优化移动深度学习 随着深度学习的巨大成功,将深度神经网络部署到移动设备的需求正在迅速增长.与在台式机平台上所做的类似,在移动设备中使用GPU可以提高推理速度和能源效率.但是,大 ...

  9. GPU上的图像和信号处理

    GPU上的图像和信号处理 NVIDIA Performance Primitives(NPP)库提供GPU加速的图像,视频和信号处理功能,其执行速度比仅CPU实施快30倍.拥有5000多个用于图像和信 ...

随机推荐

  1. hdu4496并查集的删边操作

    题意:       给你一个图,问你删除一些边后还有几个连通快.. 思路:       典型的并查集删边操作,并查集的删边就是先把不删除的边并查集一边(本题没有不删除的边),然后逆序吧所有要删除的边以 ...

  2. POJ2594 最小路径覆盖

    题意:       题意就是给你个有向无环图,问你最少放多少个机器人能把图全部遍历,机器人不能走回头路线. 思路:      如果直接建图,跑一遍二分匹配输出n - 最大匹配数会跪,原因是这个题目和以 ...

  3. Python socket编程(阻塞) --基于SocketServer

    SocketServer模块是Python对socket常规通信的一个经过封装的模块,使用简单,基于面向对象的设计模式,但功能有限,可用于快速开发. Tips: 默认端口:6767 默认本地ip:12 ...

  4. Python爬虫之-动态网页数据抓取

    什么是AJAX: AJAX(Asynchronouse JavaScript And XML)异步JavaScript和XML.过在后台与服务器进行少量数据交换,Ajax 可以使网页实现异步更新.这意 ...

  5. 使用QT creator实现一个五子棋AI包括GUI实现(8K字超详细)

    五子棋AI实现 五子棋游戏介绍 五子棋的定义 五子棋是全国智力运动会竞技项目之一,是具有完整信息的.确定性的.轮流行动的.两个游戏者的零和游戏.因此,五子棋是一个博弈问题. 五子棋的玩法 五子棋有两种 ...

  6. Day003 包机制

    包机制 为了更好地组织类,Java提供了包机制,用于区别类名的命名空间. 包语句的语法格式为: package pkg1[.pkg2[.pkg3....]]; 一般利用公司的域名倒置作为包名; 例如: ...

  7. .NET 在信创常用软件适配清单之中?

    2020年8月份写了一篇文章<.NET Core也是国产化信息系统开发的重要选项>, 这又过去了大半年了,在信创领域发生了很大的变化,今天写这篇文章主要是想从信创常用软件适配清单 看一看. ...

  8. 从执行上下文(ES3,ES5)的角度来理解"闭包"

    目录 介绍执行上下文和执行上下文栈概念 执行上下文 执行上下文栈 伪代码模拟分析以下代码中执行上下文栈的行为 代码模拟实现栈的执行过程 通过ES3提出的老概念-理解执行上下文 1.变量对象和活动对象 ...

  9. apache common pool2原理与实战

    完整源码,请帮我点个star哦! 原文地址为https://www.cnblogs.com/haixiang/p/14783955.html,转载请注明出处! 简介 对象池顾名思义就是存放对象的池,与 ...

  10. Nios II系统在Quartus II编译后Timing requirements for slow timing model timing analysis were not met. See Report window for details

    来自http://wenku.baidu.com/link?url=h0Z_KvXD3vRAn9H8mjfbVErVOF_Kd3h-BZSyF1r4sEYj3ydJGEfBHGY1mvntP4HDuF ...