This blog is to explain how to install Tensorflow object detection API in Anaconda in Windows 10 as well as how to train train a convolution neural network to do object detection on your own data set.

Steps:

1. Installation and Configuration

Install Anaconda

First we need to install Anaconda on Windows 10. For specific introduction see this link

https://medium.com/@GalarnykMichael/install-python-on-windows-anaconda-c63c7c3d1444

After we have installed Anaconda in windows, lets start to install tensorflow

Install Tensorflow

open an Anaconda Prompt and run the following code

C:\>conda create --name tf_obj_detect python=3.6

This command will create an environment first named with ‘tf_obj_detect’ and will install all the packages required by python3.5. (I tried to install tensorflow-gpu at frist but failed, so I switch to install regular tensorflow)

Then, activate the environment by issuing

C:\>conda activate tf_onj_detect

Install tensorflow-gpu in this environment by issuing

(tf_obj_detect)C:\>pip install tensorflow

Install the other necessary packages by issuing the following commands

(tf_obj_detect) C:\> pip install pillow
(tf_obj_detect) C:\> pip install lxml
(tf_obj_detect) C:\> pip install Cython
(tf_obj_detect) C:\> pip install jupyter
(tf_obj_detect) C:\> pip install matplotlib
(tf_obj_detect) C:\> pip install pandas
(tf_obj_detect) C:\> pip install opencv-python

Download TensorFlow Object Detection API repository from GitHub

Create a folder named tensorflow1 in C, this working directory will contain all  Tensorflow object detection frameworks, and also the test/train images, configuration files etc. Download the full Tensorflow object detection repository  by clicking Clone or download. Open the downloaded file and extract the model-master file to the C:\tensorflow1 and rename the models-master folder to models

Download Faster-RCNN-Inception-V2 model

This post will use the Faster-RCNN-Inception-V2 model, you could download the model here . Open the downloaded file and   faster_rcnn_inception_v2_coco_2018_01_28 folder to the C:\tensorflow1\models\research\object_detection folder. (Note: The model date and version will likely change in the future, but it should still work with this post.)

Download useful python script

Download the repositoryhere. It contains useful python scripts for generating the training data. extract all the contents directly into the C:\tensorflow1\models\research\object_detection directory

To train our own dataset we need to delete the following files

  • All files in \object_detection\images\train and \object_detection\images\test
  • The “test_labels.csv” and “train_labels.csv” files in \object_detection\images
  • All files in \object_detection\training
  • All files in \object_detection\inference_graph

Configure PYTHONPATH environment variable

(test) C:\> set PYTHONPATH=C:\tensorflow1\models;C:\tensorflow1\models\research;C:\tensorflow1\models\research\slim

  (Note: Every time the "tensorflow1" virtual environment is exited, the PYTHONPATH variable is reset and needs to be set up again.)

Compile Protobufs and run setup.py'

The compilation command posted on TensorFlow’s Object Detection API ,https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md, does not work on Windows. In the Anaconda Command Prompt, change directories to the \models\research directory and copy and paste the following command into the command line and press Enter:

protoc --python_out=. .\object_detection\protos\anchor_generator.proto .\object_detection\protos\argmax_matcher.proto .\object_detection\protos\bipartite_matcher.proto .\object_detection\protos\box_coder.proto .\object_detection\protos\box_predictor.proto .\object_detection\protos\eval.proto .\object_detection\protos\faster_rcnn.proto .\object_detection\protos\faster_rcnn_box_coder.proto .\object_detection\protos\grid_anchor_generator.proto .\object_detection\protos\hyperparams.proto .\object_detection\protos\image_resizer.proto .\object_detection\protos\input_reader.proto .\object_detection\protos\losses.proto .\object_detection\protos\matcher.proto .\object_detection\protos\mean_stddev_box_coder.proto .\object_detection\protos\model.proto .\object_detection\protos\optimizer.proto .\object_detection\protos\pipeline.proto .\object_detection\protos\post_processing.proto .\object_detection\protos\preprocessor.proto .\object_detection\protos\region_similarity_calculator.proto .\object_detection\protos\square_box_coder.proto .\object_detection\protos\ssd.proto .\object_detection\protos\ssd_anchor_generator.proto .\object_detection\protos\string_int_label_map.proto .\object_detection\protos\train.proto .\object_detection\protos\keypoint_box_coder.proto .\object_detection\protos\multiscale_anchor_generator.proto .\object_detection\protos\graph_rewriter.proto

(Note: TensorFlow occassionally adds new .proto files to the \protos folder. If you get an error saying ImportError: cannot import name 'something_something_pb2' , you may need to update the protoc command to include the new .proto files.)

Finally, run the following commands from the C:\tensorflow1\models\research directory:

(test) C:\tensorflow1\models\research> python setup.py build
(test) C:\tensorflow1\models\research> python setup.py install

Test Tensorflow object API works properly

once you finish the installation, you can verify installation is working by launching the object_detection_tutorial.ipynb script with Jupyter. From the \object_detection directory, issue this command:

(test) C:\tensorflow1\models\research\object_detection> jupyter notebook object_detection_tutorial.ipynb

Go to the Cell menu option, and then "Run All." you should see two labeled images at the bottom section the page. If you see this, then everything is working properly! If not, the bottom section will report any errors encountered.

                

2. Build your own dataset

Gather pictures

I use the To obtain a robust detector, the training data should have different background and illumination condition.There should be some images where the desired object is partially obscured, overlapped with something else, or only halfway in the picture.

For my bolt detector I only have one object, bolt, to detect. The original dataset is quite small, only have  30 images. To enlarge my dataset I first crop the images and then do the data agumentation on the cropped images. I use the code in this page for data augmentation, and now there are more than 300 pictures in my datasets

Label pictures

Next download and install LabelImg, point it to your \images\train directory, and then draw a box around each object in each image. Repeat the process for all the images in the \images\test directory. This will take a whileLabelImg could generate XML file containing label data for each image. We need to convert these XML files to singular CSV files that can be then converted to the TFRecord files which are one of the inputs to the TensorFlow trainer. These XML files should be placed in the same folder and same name with images, but with .xml-extension,

Generating training data

To do this I make use of python scripts from datitrans github. ,with some slight modifications to work with our directory structure. To begin, we're going to usexml_to_csv.py.   From the \object_detection folder, issue the following command in the Anaconda command prompt:

(test) C:\tensorflow1\models\research\object_detection> python xml_to_csv.py

Now, grab generate_tfrecord.py. The only modification that you will need to make here is in the class_text_to_int function. You need to change this to your specific class. In our case, we just have ONE class, we will replace the following code in generate_tfrecord.py:

# TO-DO replace this with label map
def class_text_to_int(row_label):
if row_label == 'nine':
return 1
elif row_label == 'ten':
return 2
elif row_label == 'jack':
return 3
elif row_label == 'queen':
return 4
elif row_label == 'king':
return 5
elif row_label == 'ace':
return 6
else:
return None

  with this

# TO-DO replace this with label map
def class_text_to_int(row_label):
if row_label == 'bolt':
return 1
else:
None

  Then, generate the TFRecord files by issuing these commands from the \object_detection folder:

python generate_tfrecord.py --csv_input=images\train_labels.csv --image_dir=images\train --output_path=train.record
python generate_tfrecord.py --csv_input=images\test_labels.csv --image_dir=images\test --output_path=test.record

3. Create Labelmap and Configure Training

Label Map

The label map tell the classifier what each object is by definig a map from the class names to class IDs. Create a labelmap.pbtxt in\object_detection\training folder. The type in the label map in the format below

item {
id: 1
name: 'bolt'
}

  

 Configure training

Navigate to C:\tensorflow1\models\research\object_detection\samples\configs and copy the faster_rcnn_inception_v2_pets.config file into the \object_detection\training directory. Then make the following changes to the faster_rcnn_inception_v2_pets.config file

  • Line 9. Change num_classes to the number of different objects you want the classifier to detect. For the above basketball, shirt, and shoe detector, it would be num_classes : 3 .

  • Line 110. Change fine_tune_checkpoint to:

    • fine_tune_checkpoint : "C:/tensorflow1/models/research/object_detection/faster_rcnn_inception_v2_coco_2018_01_28/model.ckpt"
  • Lines 126 and 128. In the train_input_reader section, change input_path and label_map_path to:

    • input_path : "C:/tensorflow1/models/research/object_detection/train.record"
    • label_map_path: "C:/tensorflow1/models/research/object_detection/training/labelmap.pbtxt"
  • Line 132. Change num_examples to the number of images you have in the \images\test directory.

  • Lines 140 and 142. In the eval_input_reader section, change input_path and label_map_path to:

    • input_path : "C:/tensorflow1/models/research/object_detection/test.record"
    • label_map_path: "C:/tensorflow1/models/research/object_detection/training/labelmap.pbtxt"

Save the file after the changes have been made. That’s it! The training job is all configured and ready to go!

4. Run Training

Move train.py from /object_detection/legacy into the /object_detection folder and issue the following command to begin training:

python train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/faster_rcnn_inception_v2_pets.config

If everything has been set up correctly, TensorFlow will initialize the training. The initialization can take up to 30 seconds before the actual training begins. When training begins, it will look like this:

You'd better train your model to train until the loss consistently drops below 0.05, which will take about 50,000 steps for me.

You can view the progress of the training job by using TensorBoard. To do this, open a new instance of Anaconda Prompt, activate the tensorflow1 virtual environment, change to the C:\tensorflow1\models\research\object_detection directory, and issue the following command

(test) C:\tensorflow1\models\research\object_detection>tensorboard --logdir=training

If you see nothing in the tensorboard in IE try to use chorme. Here is my result.

5. Export Inference Graph

The last step is to generate the frozen inference graph (.pb file). From the \object_detection folder, issue the following command, where “XXXX” in “model.ckpt-XXXX” should be replaced with the highest-numbered .ckpt file in the training folder:

python export_inference_graph.py --input_type image_tensor --pipeline_config_path training/faster_rcnn_inception_v2_pets.config
--trained_checkpoint_prefix training/model.ckpt-XXXX --output_directory inference_graph

This creates a frozen_inference_graph.pb file in the \object_detection\inference_graph folder. The .pb file contains the object detection classifier.

6. Test on your own dataset

I copied some of my images into the models/object_detection/test_images directory, and renamed them to be image3.jpg, image4.jpg...etc. Booting up jupyter notebook and opening the object_detection_tutorial.ipynb with some modifications. First head to the Variables section, and let's change the model name, and the paths to the checkpoint and the labels:

# What model to download.
MODEL_NAME = 'inference_graph' # Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' # List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('training', 'labelmap.pbtxt') NUM_CLASSES = 1

  

Next, we can just delete the entire Download Model section, since we don't need to download anymore.

Finally, in the Detection section, change the TEST_IMAGE_PATHS var to:

TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(4, 13) ]

  

With that, you can go to the Cell menu option, and then "Run All."

Here are a few of my results:

Referencehttps://github.com/EdjeElectronics/TensorFlow-Object-Detection-API-Tutorial-Train-Multiple-Objects-Windows-10

        https://pythonprogramming.net/testing-custom-object-detector-tensorflow-object-detection-api-tutorial/?completed=/training-custom-objects-tensorflow-object-detection-api-tutorial/

Install Tensorflow object detection API in Anaconda (Windows)的更多相关文章

  1. Tensorflow object detection API ——环境搭建与测试

    1.开发环境搭建 ①.安装Anaconda 建议选择 Anaconda3-5.0.1 版本,已经集成大多数库,并将其作为默认python版本(3.6.3),配置好环境变量(Anaconda安装则已经配 ...

  2. 对于谷歌开源的TensorFlow Object Detection API视频物体识别系统实现教程

    本教程针对Windows10实现谷歌近期公布的TensorFlow Object Detection API视频物体识别系统,其他平台也可借鉴. 本教程将网络上相关资料筛选整合(文末附上参考资料链接) ...

  3. 安装运行谷歌开源的TensorFlow Object Detection API视频物体识别系统

    Linux安装 参照官方文档:https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/inst ...

  4. Tensorflow object detection API 搭建物体识别模型(三)

    三.模型训练 1)错误一: 在桌面的目标检测文件夹中打开cmd,即在路径中输入cmd后按Enter键运行.在cmd中运行命令: python /your_path/models-master/rese ...

  5. Tensorflow object detection API(1)---环境搭建与测试

    参考: https://blog.csdn.net/dy_guox/article/details/79081499 https://blog.csdn.net/u010103202/article/ ...

  6. 使用TensorFlow Object Detection API+Google ML Engine训练自己的手掌识别器

    上次使用Google ML Engine跑了一下TensorFlow Object Detection API中的Quick Start(http://www.cnblogs.com/take-fet ...

  7. 谷歌开源的TensorFlow Object Detection API视频物体识别系统实现教程

    视频中的物体识别 摘要 物体识别(Object Recognition)在计算机视觉领域里指的是在一张图像或一组视频序列中找到给定的物体.本文主要是利用谷歌开源TensorFlow Object De ...

  8. Tensorflow object detection API 搭建属于自己的物体识别模型

    一.下载Tensorflow object detection API工程源码 网址:https://github.com/tensorflow/models,可通过Git下载,打开Git Bash, ...

  9. Tensorflow object detection API 搭建物体识别模型(一)

    一.开发环境 1)python3.5 2)tensorflow1.12.0 3)Tensorflow object detection API :https://github.com/tensorfl ...

随机推荐

  1. C++算法代码——细胞问题

    题目来自:http://218.5.5.242:9018/JudgeOnline/problem.php?id=1152 http://ybt.ssoier.cn:8088/problem_show. ...

  2. 自定义Edit 样式 简便写法

    1 <?xml version="1.0" encoding="utf-8"?> 2 <selector xmlns:android=&quo ...

  3. Java之HTTP网络编程(一):TCP/SSL网页下载

    目录 一.简介:HTTP程序设计 1.HTTP系统设计 2.HTTP客户端工作过程 3.HTTP服务端工作过程 二.基于TCP Socket的HTTP网页下载 三.基于SSL Socket的HTTPS ...

  4. 物联网网关开发:基于MQTT消息总线的设计过程(上)

    道哥的第 021 篇原创 目录 一.前言 二.网关的作用 2.1 指令转发 2.2 外网通信 2.3 协议转换 2.4 设备管理 2.5 边沿计算(自动化控制) 三.网关内部进程之间的通信 3.1 网 ...

  5. Android 开发学习进程0.28 腾讯TBS接入和相关问题

    TBS 的接入和使用 TBS 的接入 腾讯TBS是X5内核的升级版,可以当作webview 来打开 网页,可以以用来打开docx doc pdf 等文件,这里主要使用的是文件功能. 依赖接入 api ...

  6. StrictMode 检测应用

     Application, Activity, or other application component's onCreate() method:if (BuildConfig.SHOW_LOG) ...

  7. OLAP分析

    OLAP分析 1 视频教程 视频教程 如果对资源下载.分析操作有疑问,直接跟着视频做一遍即可. 2 数据集合说明 FoodMart,其为一家食品连锁店经营产生的数据存放的数据库,包括销售数据.库存数据 ...

  8. CSS:CSS基础

    和 HTML 类似,CSS 也不是真正的编程语言,甚至不是标记语言.它是一门样式表语言,这也就是说人们可以用它来选择性地为 HTML 元素添加样式. CSS规则集 选择器(Selector):元素的名 ...

  9. Java基础:运算符

    算数运算符:+,-,*,/,%,++,-- 赋值运算符:= 关系运算符:>,<,>=,<=,==,!=,instanceof 逻辑运算符:&&,||,! 位运算 ...

  10. web实现时钟效果

    纯原生开发时钟效果,话不多说直接上代码. HTML标签部分 <div class="cricles">         <div class="poin ...