Cho Y, Saul L K. Kernel Methods for Deep Learning[C]. neural information processing systems, 2009: 342-350.

@article{cho2009kernel,

title={Kernel Methods for Deep Learning},

author={Cho, Youngmin and Saul, Lawrence K},

pages={342--350},

year={2009}}

这篇文章介绍了一种新的核函数, 其启发来自于神经网络的运算.



其中\(\Theta(z)=\frac{1}{2}(1+\mathrm{sign}(z))\).

主要内容

主要性质, 公式(1)可以表示成:

\[k_n(\mathbf{x}, \mathbf{y}) = \frac{1}{\pi} \|\mathbf{x}\|^n\|\mathbf{y}\|^n J_n(\theta).
\tag{2}
\]

其中:

\[J_n(\theta) = (-1)^n (\sin \theta)^{2n+1} (\frac{1}{\sin \theta} \frac{\partial}{\partial \theta})^n(\frac{\pi-\theta}{\sin \theta}).
\tag{3}
\]
\[\theta = \cos^{-1} (\frac{\mathbf{x}\cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}).
\tag{4}
\]

特别的:

其证明如下:



第(17)的证明我没有推, 因为 contour integration 暂时不了解.

细心的读者可能会发现, 最后的结果是\(\frac{\partial^n}{\partial(\cos \theta)^n}\), 注意对于一个函数\(f(\cos \theta)\), 我们可以令\(g(\theta) = f(\cos \theta)\)则:

\[\frac{\partial f}{\partial \cos \theta} = \frac{\partial{g}}{\partial \theta} \frac{\partial\theta}{\partial \cos \theta},
\]

\[\mathrm{d}\cos \theta =-\sin \theta \mathrm{d} \theta.
\]

便得结论.

与深度学习的联系

如果我们把注意力集中在某一层, 假设输入为\(\mathbf{x}\), 输出为:

\[\mathbf{f}(\mathbf{x}) = g(W\mathbf{x}) \in \mathbb{R}^m,
\]

其中\(g(z) = \Theta(z) z^n\)是激活函数, 不同的n有如下的表现:



\(n=1\)便是我们熟悉的ReLU.

考虑俩个输入\(\mathbf{x},\mathbf{y}\)所对应的输出\(\mathbf{f}(\mathbf{x}),\mathbf{f}(\mathbf{y})\)的内积:

\[\mathbf{f}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{y}) = \sum_{i=1}^m \Theta(\mathbf{w}_i \cdot \mathbf{x}) \Theta(\mathbf{w}_i \cdot \mathbf{y}) (\mathbf{w}_i \cdot \mathbf{x})^n (\mathbf{w}_i \cdot \mathbf{y})^n
\]

如果每个权重\(W_{ij}\)都服从标准正态分布, 则:

\[\lim_{m \rightarrow \infty} \frac{2}{m} \mathbf{f} (\mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) = k_n(\mathbf{x}, \mathbf{y}).
\]

实验

实验失败了, 代码如下.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.svm import NuSVC
"""
Arc_cosine kernel
"""
class Arc_cosine: def __init__(self, n=1):
self.n = n
self.own_kernel = self.kernels(n) def kernel0(self, x, y):
norm_x = np.linalg.norm(x)
norm_y = np.linalg.norm(y)
cos_value = x @ y / (norm_x *
norm_y)
angle = np.arccos(cos_value)
return 1 - angle / np.pi def kernel1(self, x, y):
norm_x = np.linalg.norm(x)
norm_y = np.linalg.norm(y)
cos_value = x @ y / (norm_x *
norm_y)
angle = np.arccos(cos_value)
sin_value = np.sin(angle)
return (norm_x * norm_y) ** self.n * \
(sin_value + (np.pi - angle) *
cos_value) / np.pi def kernel2(self, x, y):
norm_x = np.linalg.norm(x)
norm_y = np.linalg.norm(y)
cos_value = x @ y / (norm_x *
norm_y)
angle = np.arccos(cos_value)
sin_value = np.sin(angle)
return (norm_x * norm_y) ** self.n * \
3 * sin_value * cos_value + \
(np.pi - angle) * (1 + 2 * cos_value ** 2) def kernels(self, n):
if n is 0:
return self.kernel0
elif n is 1:
return self.kernel1
elif n is 2:
return self.kernel2
else:
raise ValueError("No such kernel, n should be "
"0, 1 or 2") def kernel(self, X, Y):
m = X.shape[0]
n = Y.shape[0]
C = np.zeros((m, n))
for i in range(m):
for j in range(n):
C[i, j] = self.own_kernel(
X[i], Y[j]
)
return C def __call__(self, X, Y):
return self.kernel(X, Y)

在俩个数据上进行SVM, 数据如下:





在SVM上跑:

'''
#生成圈圈数据
def generate_data(circle, r1, r2, nums=300):
variance = 1
rs1 = np.random.randn(nums) * variance + r1
rs2 = np.random.randn(nums) * variance + r2
angles = np.linspace(0, 2*np.pi, nums)
data1 = (rs1 * np.sin(angles) + circle[0],
rs1 * np.cos(angles) + circle[1])
data2 = (rs2 * np.sin(angles) + circle[0],
rs2 * np.cos(angles) + circle[1])
df1 = pd.DataFrame({'x':data1[0], 'y': data1[1],
'label':np.ones(nums)})
df2 = pd.DataFrame({'x':data2[0], 'y': data2[1],
'label':-np.ones(nums)}) return df1, df2
''' #生成十字数据
def generate_data(left, right, down, up,
circle=(0., 0.), nums=300):
variance = 1
y1 = np.random.rand(nums) * variance + circle[1]
x2 = np.random.rand(nums) * variance + circle[0]
x1 = np.linspace(left, right, nums)
y2 = np.linspace(down, up, nums)
df1 = pd.DataFrame(
{'x': x1,
'y': y1,
'label':np.ones_like(x1)}
)
df2 = pd.DataFrame(
{'x': x2,
'y': y2,
'label':-np.ones_like(x2)}
)
return df1, df2 def pre_test(left, right, func, nums=100):
x1, y1 = left
x2, y2 = right
x = np.linspace(x1, x2, nums)
y = np.linspace(y1, y2, nums)
X,Y = np.meshgrid(x,y)
m, n = X.shape
Z = func(np.vstack((X.reshape(1, -1),
Y.reshape(1, -1))).T).reshape(m, n) return X, Y, Z df1, df2 = generate_data(-10, 10, -10, 10)
df = df1.append(df2)
classifer2 = NuSVC(kernel=Arc_cosine(n=1))
classifer2.fit(df.iloc[:, :2], df['label'])
X, Y, Z = pre_test((-10, -10), (10, 10), classifer2.predict)
plt.contourf(X, Y, Z)
plt.show()

预测结果均为:

而在一般的RBF上, 结果都是很好的:

在多项式核上也ok:

如果有人能发现代码中的错误,请务必指正.

Kernel Methods for Deep Learning的更多相关文章

  1. (转) Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance

    Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance 2018-1 ...

  2. 深度学习的集成方法——Ensemble Methods for Deep Learning Neural Networks

    本文主要参考Ensemble Methods for Deep Learning Neural Networks一文. 1. 前言 神经网络具有很高的方差,不易复现出结果,而且模型的结果对初始化参数异 ...

  3. Paper List ABOUT Deep Learning

    Deep Learning 方向的部分 Paper ,自用.一 RNN 1 Recurrent neural network based language model RNN用在语言模型上的开山之作 ...

  4. Deep Learning方向的paper

    转载 http://hi.baidu.com/chb_seaok/item/6307c0d0363170e73cc2cb65 个人阅读的Deep Learning方向的paper整理,分了几部分吧,但 ...

  5. Kernel Functions for Machine Learning Applications

    In recent years, Kernel methods have received major attention, particularly due to the increased pop ...

  6. Deep Learning and the Triumph of Empiricism

    Deep Learning and the Triumph of Empiricism By Zachary Chase Lipton, July 2015 Deep learning is now ...

  7. How To Improve Deep Learning Performance

    如何提高深度学习性能 20 Tips, Tricks and Techniques That You Can Use ToFight Overfitting and Get Better Genera ...

  8. My deep learning reading list

    My deep learning reading list 主要是顺着Bengio的PAMI review的文章找出来的.包括几本综述文章,将近100篇论文,各位山头们的Presentation.全部 ...

  9. Deep Learning关于Vision的Reading List

    最近开始学习深度学习了,加油! 下文转载自:http://blog.sina.com.cn/s/blog_bda0d2f10101fpp4.html 主要是顺着Bengio的PAMI review的文 ...

随机推荐

  1. linux 内存变量的分布

    我们知道,linux通过虚拟内存管理进程的内存(进程的地址空间),而进程的地址空间分布如下 : 从进程的空间中可以看出,内存中的变量有的来自可执行elf文件,在elf文件中已经分配好存储空间,有的是在 ...

  2. Notepad++【远程操作linux文件】

    目录 目的 预期效果 操作步骤 1.打开插件 2.安装NppFTP 3.连接远程主机 注意 目的 通过Notepad++远程登录linux主机,修改配置文件 预期效果 在Notepad++上登录lin ...

  3. navicate连接Mysql5.7时,显示Access denied for user 'root'@'localhost' (using password: YES) 错误

    最近新装了Mysql5.7,按如下设置好了允许远程连接    (1)找到mysql配置文件并修改 sudo vi /etc/mysql/mysql.conf.d/mysqld.cnf 将bind-ad ...

  4. Js和Thymeleaf如何获取model中的值

    一.Jquery获取Model中的数据 1.将model中的值赋给hidden,然后Js获取隐藏域的值. 后台的实现: @RequestMapping("/QEditorMod1" ...

  5. js和jquery之间的转换

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  6. 【JAVA今法修真】 第一章 今法有万象 百家欲争鸣

    大家好,我是南橘,因为这段时间很忙,忙着家里的事情,忙着工作的事情,忙着考试的事情,很多时候没有那么多经历去写新的东西,同时,也是看了网上一些比较新颖的文章输出方式,自己也就在想,我是不是也可以这样写 ...

  7. JavaEE期末复习

    期末复习 基础 jsp技术中嵌入java代码,使用的符号 <%%> 掌握jsp技术中引用其他标签库指令标签的书写 掌握jsp技术中request对象setAttribute( ).setC ...

  8. TCP链接请求的10种状态

    一.状态显示 SYN_SENT:这个状态与SYN_RCVD遥相呼应,当客户端SOCKET执行CONNECT连接时,它首先发送SYN报文,随即进入到了SYN_SENT状态,并等待服务端的发送三次握手中的 ...

  9. 开发中Design Review和Code Review

    一.Design Review 详解 翻译为设计评审,也就是对需求设计进行审核,防止出现异常问题,例如下面的这些 可用性 外部依赖有哪些?如果这些外部依赖崩溃了我们有什么处理措施? 我们SLA是什么? ...

  10. 【Redis的那些事 · 上篇】Redis的介绍、五种数据结构演示和分布式锁

    Redis是什么 Redis,全称是Remote Dictionary Service,翻译过来就是,远程字典服务. redis属于nosql非关系型数据库.Nosql常见的数据关系,基本上是以key ...