1067 - Combinations
Time Limit: 2 second(s) Memory Limit: 32 MB

Given n different objects, you want to take k of them. How many ways to can do it?

For example, say there are 4 items; you want to take 2 of them. So, you can do it 6 ways.

Take 1, 2

Take 1, 3

Take 1, 4

Take 2, 3

Take 2, 4

Take 3, 4

Input

Input starts with an integer T (≤ 2000), denoting the number of test cases.

Each test case contains two integers n (1 ≤ n ≤ 106), k (0 ≤ k ≤ n).

Output

For each case, output the case number and the desired value. Since the result can be very large, you have to print the result modulo 1000003.

Sample Input

Output for Sample Input

3

4 2

5 0

6 4

Case 1: 6

Case 2: 1

Case 3: 15


Problem Setter: Jane Alam Jan
思路:费马小定理。
这个是组合数取模,有卢卡斯定理可以解决,但还没学,所以用费马小定理和快速幂水了一发。
当然先打表求阶乘取模,然后根据组合数公式Cnm=(m!)/((n!)*(m-n)!);
由于所给的数是1000003,素数,(n!)*(m-n)!,不能整除,根据(p/q)%N=k%N;其中k为所要求的数,
那么可以得到(p)%N=k*q%N;所以用费马小定理求下q的逆元就可以了,复杂度(N*log(N));
 1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<math.h>
5 #include<stdlib.h>
6 #include<string.h>
7 using namespace std;
8 typedef long long LL;
9 const long long N=1e6+3;
10 long long MM[1000005];
11 long long quick(long long n,long m);
12 int main(void)
13 {
14 long long p,q;MM[0]=1;
15 MM[1]=1;int i,j;
16 for(i=2;i<=1000000;i++)
17 {
18 MM[i]=(MM[i-1]%N*(i))%N;
19 }int v;
20 scanf("%d",&v);
21 for(j=1;j<=v;j++)
22 {scanf("%lld %lld",&p,&q);
23 long long x=MM[q]*MM[p-q]%N;
24 long long cc=quick(x,N-2);
25 long long ans=MM[p]*cc%N;
26 printf("Case %d: ",j);
27 printf("%lld\n",ans);
28 }
29 return 0;
30 }
31
32 long long quick(long long n,long m)
33 {
34 long long k=1;
35 while(m)
36 {
37 if(m&1)
38 {
39 k=(k%N*n%N)%N;
40 }
41 n=n*n%N;
42 m/=2;
43 }
44 return k;
45 }

1067 - Combinations的更多相关文章

  1. Light OJ 1067 Combinations (乘法逆元)

    Description Given n different objects, you want to take k of them. How many ways to can do it? For e ...

  2. LightOJ - 1067 - Combinations(组合数)

    链接: https://vjudge.net/problem/LightOJ-1067 题意: Given n different objects, you want to take k of the ...

  3. light oj 1067 费马小定理求逆元

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1067 1067 - Combinations Given n differen ...

  4. lightoj刷题日记

    提高自己的实力, 也为了证明, 开始板刷lightoj,每天题量>=1: 题目的类型会在这边说明,具体见分页博客: SUM=54; 1000 Greetings from LightOJ [简单 ...

  5. Combinations

    Given two integers n and k, return all possible combinations of k numbers out of 1 ... n. For exampl ...

  6. [LeetCode] Factor Combinations 因子组合

    Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a func ...

  7. [LeetCode] Combinations 组合项

    Given two integers n and k, return all possible combinations of k numbers out of 1 ... n. For exampl ...

  8. [LeetCode] Letter Combinations of a Phone Number 电话号码的字母组合

    Given a digit string, return all possible letter combinations that the number could represent. A map ...

  9. 本地无法启动MySQL服务,报的错误:1067,进程意外终止

    在本地计算机无法启动MYSQL服务错误1067进程意外终止 这种情况一般是my.ini文件配置出错了 首先找到这个文件: 默认安装路径 C:/Program Files/MySQL/MySQL Ser ...

随机推荐

  1. 【讨论】APP的免填邀请码解决方案

    00x0 具体需求 app中已注册的用户分享一个含有邀请码的二维码,分享到朋友圈新用户在朋友圈打开这个这个链接下载app.新用户安装后打开app后就自动绑定邀请码要求用户不填写任何东西 朋友老板出差给 ...

  2. Hadoop 相关知识点(二)

    1.HDFS副本机制 Hadoopde 默认副本布局策略是: (1)在运行客户端的节点上放置第一个副本(如果客户端运行在集群之外,就随机选择一个节点,不过系统会避免选择那些存储太满或者太忙的节点): ...

  3. Hive(八)【行转列、列转行】

    目录 一.行转列 相关函数 concat concat_ws collect_set collect_list 需求 需求分析 数据准备 写SQL 二.列转行 相关函数 split explode l ...

  4. Shell学习(三)——Shell条件控制和循环语句

    参考博客: [1]Shell脚本的条件控制和循环语句 一.条件控制语句 1.if语句 1.1语法格式: if [ expression ] then Statement(s) to be execut ...

  5. oracle中的数组

    Oracle中的数组分为固定数组和可变数组. 一.固定数组固定数组:在定义的时候预定义了数组的大小,在初始化数组时如果超出这个大小,会提示ORA-06532:超出小标超出限制!语法:        T ...

  6. mybatis-plus条件构造用is开头的Boolean类型字段时遇到的问题

    is打头的Boolean字段导致的代码生成器与lambda构造器的冲突 https://gitee.com/baomidou/mybatis-plus/issues/I171DD?_from=gite ...

  7. 基于DataX将数据从Sqlserver同步到Oracle

    DataX是阿里云推出的一款开源的ETL工具,通过配置json文件实现不同数据库之间的数据同步.先有需求是从Sqlserver同步数据到Oracle,网上关于DataX的介绍很多. 框架设计 Data ...

  8. 转 Android应用开发必备的20条技能

    https://blog.csdn.net/u012269126/article/details/52433237 有些andorid开发人员感觉很迷茫,接下来该去看系统源码还是继续做应用,但是感觉每 ...

  9. NSURLSession下载文件-代理

    - 3.1 涉及知识点(1)创建NSURLSession对象,设置代理(默认配置) ```objc //1.创建NSURLSession,并设置代理 /* 第一个参数:session对象的全局配置设置 ...

  10. Linux 易错小结

    修改文件夹(递归修改)权限 chmod -R 777 /html Linux查看进程的4种方法 第一种: ps aux ps命令用于报告当前系统的进程状态.可以搭配kill指令随时中断.删除不必要的程 ...