1067 - Combinations
Time Limit: 2 second(s) Memory Limit: 32 MB

Given n different objects, you want to take k of them. How many ways to can do it?

For example, say there are 4 items; you want to take 2 of them. So, you can do it 6 ways.

Take 1, 2

Take 1, 3

Take 1, 4

Take 2, 3

Take 2, 4

Take 3, 4

Input

Input starts with an integer T (≤ 2000), denoting the number of test cases.

Each test case contains two integers n (1 ≤ n ≤ 106), k (0 ≤ k ≤ n).

Output

For each case, output the case number and the desired value. Since the result can be very large, you have to print the result modulo 1000003.

Sample Input

Output for Sample Input

3

4 2

5 0

6 4

Case 1: 6

Case 2: 1

Case 3: 15


Problem Setter: Jane Alam Jan
思路:费马小定理。
这个是组合数取模,有卢卡斯定理可以解决,但还没学,所以用费马小定理和快速幂水了一发。
当然先打表求阶乘取模,然后根据组合数公式Cnm=(m!)/((n!)*(m-n)!);
由于所给的数是1000003,素数,(n!)*(m-n)!,不能整除,根据(p/q)%N=k%N;其中k为所要求的数,
那么可以得到(p)%N=k*q%N;所以用费马小定理求下q的逆元就可以了,复杂度(N*log(N));
 1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<math.h>
5 #include<stdlib.h>
6 #include<string.h>
7 using namespace std;
8 typedef long long LL;
9 const long long N=1e6+3;
10 long long MM[1000005];
11 long long quick(long long n,long m);
12 int main(void)
13 {
14 long long p,q;MM[0]=1;
15 MM[1]=1;int i,j;
16 for(i=2;i<=1000000;i++)
17 {
18 MM[i]=(MM[i-1]%N*(i))%N;
19 }int v;
20 scanf("%d",&v);
21 for(j=1;j<=v;j++)
22 {scanf("%lld %lld",&p,&q);
23 long long x=MM[q]*MM[p-q]%N;
24 long long cc=quick(x,N-2);
25 long long ans=MM[p]*cc%N;
26 printf("Case %d: ",j);
27 printf("%lld\n",ans);
28 }
29 return 0;
30 }
31
32 long long quick(long long n,long m)
33 {
34 long long k=1;
35 while(m)
36 {
37 if(m&1)
38 {
39 k=(k%N*n%N)%N;
40 }
41 n=n*n%N;
42 m/=2;
43 }
44 return k;
45 }

1067 - Combinations的更多相关文章

  1. Light OJ 1067 Combinations (乘法逆元)

    Description Given n different objects, you want to take k of them. How many ways to can do it? For e ...

  2. LightOJ - 1067 - Combinations(组合数)

    链接: https://vjudge.net/problem/LightOJ-1067 题意: Given n different objects, you want to take k of the ...

  3. light oj 1067 费马小定理求逆元

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1067 1067 - Combinations Given n differen ...

  4. lightoj刷题日记

    提高自己的实力, 也为了证明, 开始板刷lightoj,每天题量>=1: 题目的类型会在这边说明,具体见分页博客: SUM=54; 1000 Greetings from LightOJ [简单 ...

  5. Combinations

    Given two integers n and k, return all possible combinations of k numbers out of 1 ... n. For exampl ...

  6. [LeetCode] Factor Combinations 因子组合

    Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a func ...

  7. [LeetCode] Combinations 组合项

    Given two integers n and k, return all possible combinations of k numbers out of 1 ... n. For exampl ...

  8. [LeetCode] Letter Combinations of a Phone Number 电话号码的字母组合

    Given a digit string, return all possible letter combinations that the number could represent. A map ...

  9. 本地无法启动MySQL服务,报的错误:1067,进程意外终止

    在本地计算机无法启动MYSQL服务错误1067进程意外终止 这种情况一般是my.ini文件配置出错了 首先找到这个文件: 默认安装路径 C:/Program Files/MySQL/MySQL Ser ...

随机推荐

  1. HDFS05 NameNode和SecondaryNameNode

    NameNode和SecondaryNameNode(了解) 目录 NameNode和SecondaryNameNode(了解) NN 和 2NN 工作机制 NameNode工作机制 Secondar ...

  2. 零基础学习java------day3-运算符 以及eclipse的使用

    今日内容: 1. 算数运算符 2. 赋值运算符 3. 关系运算符 4. 逻辑运算符 5. 位运算符 6.三目运算符 一 运算符 运算:对常量和变量进行操作的过程称为运算 运算符:对常量和变量进行操作的 ...

  3. [转]C++中const的使用

    原文链接:http://www.cnblogs.com/xudong-bupt/p/3509567.html 平时在写C++代码的时候不怎么注重const的使用,长久以来就把const的用法忘记了 写 ...

  4. 4.1 python中调用rust程序

    概述 使用rust-cpython将rust程序做为python模块调用: 通常为了提高python的性能: 参考 https://github.com/dgrunwald/rust-cpython ...

  5. 【Linux】【Web】【HTTP】HTTP,TCP,SSL通讯过程

    1. HTTP 一次完整的http请求处理过程: (1) 建立或处理连接:接收请求或拒绝请求(三次握手): (2) 接收请求:接收来自于网络上的主机请求报文中对某特定资源的一次请求的过程: (3) 处 ...

  6. Kafaka相关命令

    开启zookeeper命令(备注:先进入zookeeper的bin目录) ./zkServer.sh start 关闭zookeeper命令(备注:先进入zookeeper的bin目录) ./zkSe ...

  7. 小程序的事件 bindtap bindinput

    一.bindtap事件 在wxml文件里绑定: <view class='wel-list' bindtap='TZdown'> <image src="/images/w ...

  8. jquery:iframe里面的元素怎样触发父窗口元素的事件?

    例如父窗口定义了一个事件. top: $(dom1).bind('topEvent', function(){}); 那么iframe里面的元素怎样触发父窗口dom1的事件呢?这样吗? $(dom1, ...

  9. 【JavaWeb】【Maven】001 下载与配置

    Maven下载与配置 Download Url:Maven – Download Apache Maven After downloading it, unpack it and configure ...

  10. 如何用CodeBlocks调试?

    一.简介 这篇文章我主要会介绍CodeBlocks的调试功能,并简单讲述如何使用它. 二.前言 大家好,最近和小伙伴们讨论修改程序的时候,我突然想到,授人以鱼不如授人以渔(指调试),于是这篇文章应运而 ...