\(\mathcal{Description}\)

  Link.

  给定 \(n,s,a_0,a_1,a_2,a_3\),求:

\[\sum_{i=0}^n\binom{n}is^ia_{i\bmod4}\bmod998244353
\]

  多测,数据组数 \(\le10^5\),\(n\le10^{18}\),其余输入 \(\le10^8\)。

\(\mathcal{Solution}\)

  单位根反演板题。记一个函数 \(f\) 有:

\[\begin{aligned}
f(x)&=\sum_{i=0}^n\binom{n}is^ix^i\\
&=(sx+1)^n
\end{aligned}
\]

  问题即求 \(i\bmod4=0,1,2,3\) 时 \(a_i\) 倍 \([x^i]f(x)\) 之和。以 \(i\bmod4=0\) 为例:

\[\begin{aligned}
\sum_{i=0}^n[4|i]a_0[x^i]f(x)&=\frac{1}4a_0\sum_{i=0}^n\left(\sum_{j=0}^3\omega_4^{ij}\right)\binom{n}is^i\\
&=\frac{1}4a_0\sum_{j=0}^3f(\omega_4^j)
\end{aligned}
\]

  直接代四个单位根进去算出来即可。对于其他三个 \(i\bmod4\) 的值,将 \(f\) 的各系数位移就能类似地求出答案。

  复杂度 \(\mathcal O(T\log n)\)(\(\times4^2\) 的常数)。

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>

#define rep( i, l, r ) for ( int i = l, repEnd##i = r; i <= repEnd##i; ++i )
#define per( i, r, l ) for ( int i = r, repEnd##i = l; i >= repEnd##i; --i ) typedef long long LL; inline LL rint () {
LL x = 0, f = 1; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x * f;
} template<typename Tp>
inline void wint ( Tp x ) {
if ( x < 0 ) putchar ( '-' ), x = -x;
if ( 9 < x ) wint ( x / 10 );
putchar ( x % 10 ^ '0' );
} const int MOD = 998244353, G = 3, INV4 = 748683265;
LL n;
int w[4], s, a[4]; inline int mul ( const long long a, const int b ) { return a * b % MOD; }
inline int add ( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline int mpow ( int a, int b ) {
int ret = 1;
for ( ; b; a = mul ( a, a ), b >>= 1 ) ret = mul ( ret, b & 1 ? a : 1 );
return ret;
} inline int f ( const int x ) {
return mpow ( add ( mul ( s, x ), 1 ), n );
} int main () {
w[0] = 1, w[1] = mpow ( G, MOD - 1 >> 2 );
w[2] = mul ( w[1], w[1] ), w[3] = mul ( w[2], w[1] );
for ( int T = rint (); T--; ) {
n = rint () % ( MOD - 1 ), s = rint ();
rep ( i, 0, 3 ) a[i] = rint ();
int ans = 0;
rep ( r, 0, 3 ) {
int res = 0;
rep ( i, 0, 3 ) {
res = add ( res,
mul ( f ( w[i] ), mpow ( w[r * i & 3], MOD - 2 ) ) );
}
ans = add ( ans, mul ( res, a[r] ) );
}
wint ( mul ( ans, INV4 ) ), putchar ( '\n' );
}
return 0;
}

Solution -「LOJ #6485」 LJJ 学二项式定理的更多相关文章

  1. 【LOJ#6485】LJJ 学二项式定理(单位根反演)

    [LOJ#6485]LJJ 学二项式定理(单位根反演) 题面 LOJ 题解 显然对于\(a0,a1,a2,a3\)分开算答案. 这里以\(a0\)为例 \[\begin{aligned} Ans&am ...

  2. Solution -「LOJ #6029」「雅礼集训 2017」市场

    \(\mathcal{Description}\)   Link.   维护序列 \(\lang a_n\rang\),支持 \(q\) 次如下操作: 区间加法: 区间下取整除法: 区间求最小值: 区 ...

  3. Solution -「LOJ #138」「模板」类欧几里得算法

    \(\mathcal{Description}\)   Link.   \(T\) 组询问,每次给出 \(n,a,b,c,k_1,k_2\),求 \[\sum_{x=0}^nx^{k_1}\left\ ...

  4. Solution -「LOJ #141」回文子串 ||「模板」双向 PAM

    \(\mathcal{Description}\)   Link.   给定字符串 \(s\),处理 \(q\) 次操作: 在 \(s\) 前添加字符串: 在 \(s\) 后添加字符串: 求 \(s\ ...

  5. Solution -「LOJ #150」挑战多项式 ||「模板」多项式全家桶

    \(\mathcal{Description}\)   Link.   给定 \(n\) 次多项式 \(F(x)\),在模 \(998244353\) 意义下求 \[G(x)\equiv\left\{ ...

  6. Solution -「LOJ #6053」简单的函数

    \(\mathcal{Description}\)   Link.   积性函数 \(f\) 满足 \(f(p^c)=p\oplus c~(p\in\mathbb P,c\in\mathbb N_+) ...

  7. 「LOJ#10051」「一本通 2.3 例 3」Nikitosh 和异或(Trie

    题目描述 原题来自:CODECHEF September Challenge 2015 REBXOR 1​​≤r​1​​<l​2​​≤r​2​​≤N,x⨁yx\bigoplus yx⨁y 表示 ...

  8. 「LOJ#10056」「一本通 2.3 练习 5」The XOR-longest Path (Trie

    #10056. 「一本通 2.3 练习 5」The XOR-longest Path 题目描述 原题来自:POJ 3764 给定一棵 nnn 个点的带权树,求树上最长的异或和路径. 输入格式 第一行一 ...

  9. LOJ6485 LJJ 学二项式定理 解题报告

    LJJ 学二项式定理 题意 \(T\)组数据,每组给定\(n,s,a_0,a_1,a_2,a_3\),求 \[ \sum_{i=0}^n \binom{n}{i}s^ia_{i\bmod 4} \] ...

随机推荐

  1. linux 设置root 密码

    指令意思: sudo -i  是 切换到root权限 ,如果没有密码,则直接可以操作,有密码则会要求输入密码 sudo passwd root  是修改密码指令 ,回车后 提示输入新密码 新密码需要输 ...

  2. Nginx虚拟主机、日志排错、模块配置

    目录 Nginx虚拟主机 1. 基于多IP的方式 2. 基于多端口的方式 3. 基于多域名的方式 Nginx日志 Nginx配置文件配置项 Nginx模块 Nginx访问控制模块 Nginx状态监控模 ...

  3. mysql5.7安装和卸载过程

    安装mysql 5.7 点击下面链接下载 mysql-5.7.27-winx64.zip 压缩文件 链接:https://pan.baidu.com/s/1CF5mmKkZkD_hxsjFOQJrzw ...

  4. 【练习】rust中的复制语义和移动语义

    1.基本类型都是复制语义的 fn main(){ let a = 123; { #[allow(unused_variables)] let b = a; //如果是移动语义,那么后续的a将不再有效 ...

  5. 【初体验】valgrind分析程序性能

    wget https://fossies.org/linux/misc/valgrind-3.15.0.tar.bz2 tar -jxvf valgrind-3.15.0.tar.bz2 cd val ...

  6. sql中常用到的GUID

    在项目的数据库中经常见到如下所示的列: 列名:**_id 数据类型:UNIQUEIDENTIFIER 默认:NEWID() ROWGUIDCOL 属性. 其实这样的列通常为表的主键,函数NEWID() ...

  7. 集合框架-TreeSet集合-二叉树

    1 package cn.itcast.p5.treeset.demo; 2 3 import java.util.Iterator; 4 import java.util.TreeSet; 5 6 ...

  8. APP 性能分析工作台——你的最佳桌面端性能分析助手

    目前 MARS-App 性能分析工作台版本为开发者提供Fastbot桌面版的服务. 旨在帮助开发者们更快.更便捷地开启智能测试之旅,成倍提升稳定性测试的效率. 作者:字节跳动终端技术--王凯 背景 F ...

  9. 边带权并查集 学习笔记 & 洛谷P1196 [NOI2002] 银河英雄传说 题解

    花了2h总算把边带权并查集整明白了qaq 1.边带权并查集的用途 众所周知,并查集擅长维护与可传递关系有关的信息.然而我们有时会发现并查集所维护的信息不够用,这时"边带权并查集"就 ...

  10. JDBC工具包commons-dbutils的基本介绍

    感谢原文作者:simonXi-tech 原文链接:https://blog.csdn.net/simonforfuture/article/details/90480147 更多请查阅在线API文档: ...