从一次重构说起

这事儿还得从一次重构优化说起。

最近在重构一个路由功能,由于路由比较复杂,需求变化也多,于是想通过责任链模式来重构,刚好这段时间也在 Sentinel-Go 中看到相关源码。

用责任链模式,最大的好处是可以针对每次请求灵活地插拔路由能力,如:

这样实现会在每次请求到来时去 new 出整个责任链,可以预见对象会频繁的创建、销毁。

对 Java 来说,对象池并不推荐,除非对象的创建特别费力,像一个连接对象,否则线程之间的锁竞争绝对比直接分配内存的消耗要多的多~

但 Go 不一样,它内置的 sync.Pool 配合调度模型(GMP)能够刚好规避这种锁竞争。

大家知道 Go 的对象池很牛逼就行了,具体原理不是本文重点,也不是一两句话能解释的清楚,有机会再写一篇文章详细说道~

但理论归理论,是骡子是马,得拉出来遛遛才知道是不是真的牛逼~

Benchmark 超时!

测试这种性能,Benchmark 肯定是首选,于是我写了个两个例子来对比,直接 New 对象和使用 sync.Pool 池化对象。

  1. func BenchmarkPooledObject(b *testing.B) {
  2. b.RunParallel(func(pb *testing.PB) {
  3. for pb.Next() {
  4. object := pool.Get().(*MyObject)
  5. Consume(object)
  6. // 用完了放回对象池
  7. object.Reset()
  8. pool.Put(object)
  9. }
  10. })
  11. }
  12. func BenchmarkNewObject(b *testing.B) {
  13. b.RunParallel(func(pb *testing.PB) {
  14. for pb.Next() {
  15. object := &MyObject{
  16. Name: "hello",
  17. Age: 2,
  18. }
  19. Consume(object)
  20. }
  21. })
  22. }

当时是这些测试参数

  1. go test -bench=. -cpu=4 -count=2 -benchtime=10s

跑出了如下结果,似乎还是直接 New 对象更快,这和理论不符合啊!

  1. BenchmarkPooledObject-4 1000000000 6.25 ns/op
  2. BenchmarkNewObject-4 1000000000 0.374 ns/op

于是就想,是不是我测试的方法哪里不太对?

池化技术能减少对象的创建、销毁的消耗,有很大一部分得益于减少 GC 次数,是不是我这只跑了10s,还没开始 GC ?

于是我查了下,什么时候 Go 会触发 GC,得到了如下的答案:

  1. 主动调用 runtime.GC 来触发
  2. 被动触发,分为两种:
    • 超过2分钟没有触发,则强制触发 GC
    • 内存增长达到一定比例,触发 GC,比如初始化堆大小为4MB,当增长 25%时,即5MB 时触发一次GC

显然主动触发不合适,被动触发没法确认增长比例,那只能依靠2分钟强制触发 GC 来达到目的了,于是我把基础测试的时间加长,改成了 -benchtime=150s

执行后,就去泡了杯茶,上了个厕所...过了很久,终于执行完了,结果却是这样的结局:

  1. *** Test killed with quit: ran too long (11m0s).

执行失败了,而且还执行了11分钟~

我搜索了下这个报错,网上说的是,Go 的单元测试和 Benchmark 都有超时时间,默认是10分钟,可以通过 -timeout 来修改。

但这不是重点,重点是为啥我设置了150s,却执行了11分钟?

源码之下没有秘密

直觉告诉我这事不简单,要么是我错了,要么是 Go 错了~ 幸好 Go 是开源的,源码之下没有秘密。

通过 Debug 和代码查阅后,先是找到了这段代码

  1. func (b *B) runN(n int) {
  2. benchmarkLock.Lock()
  3. defer benchmarkLock.Unlock()
  4. defer b.runCleanup(normalPanic)
  5. // 注意看这里,帮我们GC了
  6. runtime.GC()
  7. b.raceErrors = -race.Errors()
  8. b.N = n
  9. b.parallelism = 1
  10. // 重置计时器
  11. b.ResetTimer()
  12. // 开始计时
  13. b.StartTimer()
  14. // 执行 benchmark 方法
  15. b.benchFunc(b)
  16. // 停止计时
  17. b.StopTimer()
  18. b.previousN = n
  19. b.previousDuration = b.duration
  20. b.raceErrors += race.Errors()
  21. if b.raceErrors > 0 {
  22. b.Errorf("race detected during execution of benchmark")
  23. }
  24. }

这段代码是在执行一次我们定义的 Benchmark 方法,n 就是传入到我们定义方法参数的 *testing.B 结构中的一个属性。

而且它计算的时间也非常合理,只计算了执行我们定义方法的时间,也就是 -benchtime 的时间只是函数执行的时间,Benchmark 框架的耗时不计算在内。

更合理的是,框架在执行方法前,还帮我们触发了一次 GC,也就是说,只有我们的函数在执行的时候产生的内存垃圾才算到我们的 Benchmark 时间中,非常严谨。

但这跟我们的执行失败毫无关系~

但从一个侧面来说,Benchmark 执行的总时间一定是大于 -benchtime 设置的时间的。

真的是这样吗?我做了两组实验,就打破了这个规律:

  1. go test -bench=. -cpu=4 -count=1 -benchtime=5s
  2. BenchmarkPooledObject-4 793896368 7.65 ns/op
  3. BenchmarkNewObject-4 1000000000 0.378 ns/op
  4. PASS
  5. ok all-in-one/go-in-one/samples/object_pool 7.890s
  1. go test -bench=. -cpu=4 -count=1 -benchtime=10s
  2. BenchmarkPooledObject-4 1000000000 7.16 ns/op
  3. BenchmarkNewObject-4 1000000000 0.376 ns/op
  4. PASS
  5. ok all-in-one/go-in-one/samples/object_pool 8.508s

第二组设置了执行 10s,但总的测试时间只有8.508s,很奇怪,更奇怪的是测试结果的第二列执行次数,他们居然都是 1000000000,这么巧吗?

带着疑问,找到了 Benchmark 的这段核心代码:

  1. func (b *B) launch() {
  2. ...
  3. // 标注①
  4. if b.benchTime.n > 0 {
  5. // We already ran a single iteration in run1.
  6. // If -benchtime=1x was requested, use that result.
  7. if b.benchTime.n > 1 {
  8. b.runN(b.benchTime.n)
  9. }
  10. } else {
  11. d := b.benchTime.d
  12. // 标注②
  13. for n := int64(1); !b.failed && b.duration < d && n < 1e9; {
  14. last := n
  15. goalns := d.Nanoseconds()
  16. prevIters := int64(b.N)
  17. prevns := b.duration.Nanoseconds()
  18. if prevns <= 0 {
  19. prevns = 1
  20. }
  21. // 标注③
  22. n = goalns * prevIters / prevns
  23. // Run more iterations than we think we'll need (1.2x).
  24. // 标注④
  25. n += n / 5
  26. // Don't grow too fast in case we had timing errors previously.
  27. // 标注⑤
  28. n = min(n, 100*last)
  29. // Be sure to run at least one more than last time.
  30. // 标注⑥
  31. n = max(n, last+1)
  32. // Don't run more than 1e9 times. (This also keeps n in int range on 32 bit platforms.)
  33. // 标注⑦
  34. n = min(n, 1e9)
  35. // 标注⑧
  36. b.runN(int(n))
  37. }
  38. }
  39. b.result = BenchmarkResult{b.N, b.duration, b.bytes, b.netAllocs, b.netBytes, b.extra}
  40. }

核心都标了序号,这里来解释下:

标注①:Go 的 Benchmark 执行两种传参,执行次数和执行时间限制,我用的是执行时间,也可以用 -benchtime=1000x来表示需要测试1000次。

标注②:这里是当设置了执行时间限制时,判断时间是否足够的条件,可以看到除了时间的判断外,还有 n < 1e9 的限制,也就是最多执行次数是 1e9,也就是 1000000000,这解释了上面的一个困惑,为啥执行时间还比设置的 benchtime 小。因为 Go 限制了最大执行次数为 1e9,并不是设置多少就是多少,还有个上限。

标注③到⑧:

Go 是如何知道 n 取多少时,时间刚好符合我们设置的 benchtime?答案是试探!

n 从1 开始试探,执行1次后,根据执行时间来估算 n。n = goalns * prevIters / prevns,这就是估算公式,goalns 是设置的执行时间(单位纳秒),prevIters 是上次执行次数,prevns 是上一次执行时间(纳秒)

根据上次执行的时间和目标设定的执行总时间,计算出需要执行的次数,大概是这样吧:

目标执行次数 = 执行目标时间 / (上次执行时间 / 上次执行次数)

化简下得到:

目标执行次数 = 执行目标时间 * 上次执行次数 / 上次执行时间,这不就是上面那个公式~

目标执行次数 n 的计算,源码中还做了一些其他处理:

  • 标注④:让实际执行次数大概是目标执行次数的1.2倍,万一达不到目标时间不是有点尴尬?索性多跑一会
  • 标注⑤:也不能让 n 增长的太快了,设置个最大增长幅度为100倍,当 n 增长太快时,被测试方法一定是执行时间很短,误差可能较大,缓慢增长好测出真实的水平
  • 标注⑥:n 不能原地踏步,怎么也得+1
  • 标注⑦:n 得设置个 1e9 的上限,这是为了在32位系统上不要溢出

Go Benchmark 的执行原理大致摸清了,但我们要的答案还未浮出水面。

接着我对 Benchmark 进行了断点调试。

首先是 -benchtime=10s

发现 n 的试探增长是 1,100,10000,1000000,100000000,1000000000,最终 n 是 1000000000

这说明我们的执行方法耗时很短,执行次数达到了上限。

再看-benchtime=150s,开始还挺正常:

n 增长是 1,100,10000,1000000,100000000,但后一个出现了问题:

n 居然变成了负数!显然这是溢出了。

n = goalns * prevIters / prevns 这个公式,在目标执行时间(goalns)很大,测试方法执行时间(prevns)很短时,会导致 n 溢出!

溢出有什么后果呢?

后面的 n = min(n, 100*last) 就是负数了,但还有 n = max(n, last+1) 保证,所以 n 还是在增加,不过很慢,每次都只 +1,所以后续试探的 n 序列为 100000001,100000002,100000003....

这就导致了 n 很难达到 1e9 的上限,而且总的执行耗时也很难达到设定的预期时间,所以测试程序会一直跑~直到超时!

这大概是一个Bug吧?

写这段 Benchamrk 逻辑的作者加入了这个 1e9 的执行次数上限,考虑了溢出,但没有考虑 n 在计算过程中的溢出情况。

我觉得这应该是一个 Bug,但不能完全确定。

网上没有找到相关的 Bug 报告,于是去给 Go 官方提了 issue 和相应的修复代码,由于 Go 的开发流程比较复杂和漫长,所以在本文发表时,官方并没有明确表明这是 Bug 还是其他。

如果后续官方有回复或其他变故,我再来告诉大家~


搜索关注微信公众号"捉虫大师",后端技术分享,架构设计、性能优化、源码阅读、问题排查、踩坑实践。

我好像发现了一个Go的Bug?的更多相关文章

  1. VS 2017开发ASP.NET Core Web应用过程中发现的一个重大Bug

    今天试着用VS 2017去开发一个.net core项目,想着看看.net core的开发和MVC5开发有什么区别,然后从中发现了一个VS2017的Bug. 首先,我们新建项目,ASP.NET Cor ...

  2. 一个粗心的Bug,JSON格式不规范导致AJAX错误

    一.事件回放  今天工作时碰到了一个奇怪的问题,这个问题很早很早以前也碰到过,不过没想到过这么久了竟然又栽在这里. 当时正在联调一个项目,由于后端没有提供数据接口,于是我直接本地建立了一个 json ...

  3. 一个iOS6系统bug+一个iOS7系统bug

    先看实际工作中遇到的两个bug:(1)iPhone Qzone有一个导航栏背景随着页面滑动而渐变的体验,当页面滑动到一定距离时,会改变导航栏上title文本的颜色,但是有一个莫名其妙的bug,如下:

  4. 记一个神奇的Bug

    多年以后,当Abraham凝视着一行行新时代的代码在屏幕上川流不息的时候,他会想起2019年4月17日那个不平凡夜晚,以及在那个夜晚他发现的那个不可思议的Bug. 虽然像无数个普普通通的夜晚一样,我在 ...

  5. FIREDAC(DELPHI10 or 10.1)提交数据给ORACLE数据库的一个不是BUG的BUG

    发现FIREDAC(DELPHI10 or 10.1)提交数据给ORACLE数据库的一个不是BUG的BUG,提交的表名大小写是敏感的. 只要有一个表名字母的大小写不匹配,ORACLE就会认为是一个不认 ...

  6. 一个神奇的bug:OOM?优雅终止线程?系统内存占用较高?

    摘要:该项目是DAYU平台的数据开发(DLF),数据开发中一个重要的功能就是ETL(数据清洗).ETL由源端到目的端,中间的业务逻辑一般由用户自己编写的SQL模板实现,velocity是其中涉及的一种 ...

  7. 排查dubbo接口重复注销问题,我发现了一个巧妙的设计

    背景 我在公司内负责自研的dubbo注册中心相关工作,群里经常接到业务方反馈dubbo接口注销报错.经排查,确定是同一个接口调用了两次注销接口导致,由于我们的注册中心注销接口不能重复调用,调用第二次会 ...

  8. salesforce零基础学习(一百一十五)记一个有趣的bug

    本篇参考:https://help.salesforce.com/s/articleView?language=en_US&type=1&id=000319486 page layou ...

  9. 发现了一个非常棒的pyqt5的例子集

    发现了一个非常棒的pyqt5的例子集 https://github.com/892768447/PyQt 各种各样的PyQt测试和例子 [Python3.4.4 or Python3.5][PyQt5 ...

随机推荐

  1. 高并发场景下JVM调优实践之路

    一.背景 2021年2月,收到反馈,视频APP某核心接口高峰期响应慢,影响用户体验. 通过监控发现,接口响应慢主要是P99耗时高引起的,怀疑与该服务的GC有关,该服务典型的一个实例GC表现如下图: 可 ...

  2. 笔记本加装SSD并装系统

    1,首先了解笔记本配置信息 一般加装SSD都是120~256左右,并使用原有的机械硬盘:首先确定加装位置:1,是否支持M.2接口:假如支持,可以直接购买,拆机装上:我的笔记本不支持:所以考虑2,光驱的 ...

  3. 字符串折叠&压缩(区间DP)

    字符串折叠 题目描述 折叠的定义如下: 一个字符串可以看成它自身的折叠.记作S = S X(S)是X(X>1)个S连接在一起的串的折叠.记作X(S) = SSSS-S(X个S). 如果A = A ...

  4. C#笔记2__Char类、String类、StringBuilder类 / 正则表达式 /

    Char类 String类 字符串的格式化:String类的Format方法 StringBuilder类 以上:百度 or 查手册.....

  5. mininet-2.2.2-170321-ubuntu-14.04.4-server-amd64的使用

    1.使用Vmware打开下载好的mininet-2.2.2-170321-ubuntu-14.04.4-server-amd64 2.登录账号密码都为mininet 3.用命令行生成拓扑,并测试连通性 ...

  6. 更优于 Shellinabox 的 web shell 工具 -- ttyd

    ttyd 是一个运行在服务端,客户端通过web浏览器访问从而连接后台 tty (pts伪终端)接口的程序,把 shell 终端搬到 web 浏览器中. WebSocket WebSocket 是 HT ...

  7. 区块链开发学习第三章:私有链上部署helloBlockchain简单合约

    前面讲了部署私有链以及新增账户,现在进行到了部署合约了,此操作真是踩了无数无数无数的坑,到写文章为止确实是已经部署好了,但是还有些坑是还没有解决的! 一.Solidity编译器 开始的时候用的http ...

  8. 【java+selenium3】模拟键盘操作 (十二)

    一.键盘操作 用代码来模拟键盘的Enter或一系列的组合键,前面使用sendkeys()方法模拟键盘的输入,除此之外还可以模拟键盘组合键输入如下: 整理一些比较常用的键盘操作如下: sendKeys( ...

  9. docker容器命令(一)

    容器命令 创建容器:docker run 参数: -it 交互 -d 后台 –name 容器名 -p 主机端口:容器端口 (主机端口映射到docker端口) docker run --name cen ...

  10. RabbitMQ (五):死信队列

    什么是TTL RabbitMQ的TTL全称为Time-To-Live,表示的是消息的有效期.消息如果在队列中一直没有被消费并且存在时间超过了TTL,消息就会变成了"死信" (Dea ...