CF1446F-Line Distance【计算几何,树状数组,二分】
正题
题目链接:https://www.luogu.com.cn/problem/CF1446F
题目大意
给出\(n\)个点,求所有点对构成的直线中与原点距离第\(k\)小的距离
\(2\leq n\leq 10^5,1\leq k\leq \frac{n(n-1)}{2}\)
解题思路
二分还是挺显然的,考虑二分了之后怎么判断一个距离以内的直线数量
两个点对之间的直线在原点距离\(d\)以内,也就是这条直线经过原点为中心半径为\(d\)的圆。换一种理解,也就是如果有这个圆那么这两个点对之间无法相互看见。
现在问题变为了求有多少个点对之间无法相互看见,给张官方题解的图片就挺容易理解的
也就是说我们对于每个点找到它与圆的两个切点之间在圆上构成的一个区间。
如果两个点的区间有交集那么他们就可以相互看见。
现在问题就变为了求有多少对区间有交。
这个直接用树状数组统计就好了。
环的话直接断开,跨越了环的就取反。
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
#define lowbit(x) (x&-x)
using namespace std;
const ll N=2e5+10;
double eps=1e-8,Pi=acos(-1);
ll n,k,cnt,m,t[N],p[N],l[N],r[N];
double a[N],b[N],c[N],L[N],R[N];
bool v[N];
void Change(ll x,ll val){
while(x<=cnt){
t[x]+=val;
x+=lowbit(x);
}
return;
}
ll Ask(ll x){
ll ans=0;
while(x){
ans+=t[x];
x-=lowbit(x);
}
return ans;
}
bool cmp(ll x,ll y)
{return l[x]<l[y];}
ll check(double d){
cnt=0;m=0;
for(ll i=1;i<=n;i++)v[i]=0;
for(ll i=1;i<=n;i++){
double dis=sqrt(a[i]*a[i]+b[i]*b[i]);
if(dis-d<eps){v[i]=1;continue;}
double ang=atan2(b[i],a[i]),ta=acos(d/dis);
L[i]=ang-ta;R[i]=ang+ta;
if(L[i]<-Pi)L[i]+=2*Pi;
if(R[i]>Pi)R[i]-=2*Pi;
if(L[i]>R[i])swap(L[i],R[i]);
c[++cnt]=L[i];c[++cnt]=R[i];
}
sort(c+1,c+1+cnt);
for(ll i=1;i<=n;i++){
if(v[i])continue;p[++m]=i;
l[i]=lower_bound(c+1,c+1+cnt,L[i])-c;
r[i]=lower_bound(c+1,c+1+cnt,R[i])-c;
}
memset(t,0,sizeof(t));
sort(p+1,p+1+m,cmp);
ll ans=n*(n-1)/2;
for(ll i=1;i<=m;i++){
ll x=p[i];
ans-=Ask(r[x])-Ask(l[x]-1);
Change(r[x],1);
}
return ans;
}
signed main()
{
scanf("%lld%lld",&n,&k);
for(ll i=1;i<=n;i++)
scanf("%lf%lf",&a[i],&b[i]);
double l=0,r=20000;
while(r-l>=eps){
double mid=(l+r)/2.0;
if(check(mid)<k)l=mid;
else r=mid;
}
printf("%.10lf",l);
return 0;
}
CF1446F-Line Distance【计算几何,树状数组,二分】的更多相关文章
- POJ 2182 Lost Cows 【树状数组+二分】
题目链接:http://poj.org/problem?id=2182 Lost Cows Time Limit: 1000MS Memory Limit: 65536K Total Submis ...
- POJ 2828 Buy Tickets (线段树 or 树状数组+二分)
题目链接:http://poj.org/problem?id=2828 题意就是给你n个人,然后每个人按顺序插队,问你最终的顺序是怎么样的. 反过来做就很容易了,从最后一个人开始推,最后一个人位置很容 ...
- TZOJ 4602 高桥和低桥(二分或树状数组+二分)
描述 有个脑筋急转弯是这样的:有距离很近的一高一低两座桥,两次洪水之后高桥被淹了两次,低桥却只被淹了一次,为什么?答案是:因为低桥太低了,第一次洪水退去之后水位依然在低桥之上,所以不算“淹了两次”.举 ...
- 树状数组+二分||线段树 HDOJ 5493 Queue
题目传送门 题意:已知每个人的独一无二的身高以及排在他前面或者后面比他高的人数,问身高字典序最小的排法 分析:首先对身高从矮到高排序,那么可以知道每个人有多少人的身高比他高,那么取较小值(k[i], ...
- P2161 [SHOI2009]会场预约[线段树/树状数组+二分/STL]
题目描述 PP大厦有一间空的礼堂,可以为企业或者单位提供会议场地.这些会议中的大多数都需要连续几天的时间(个别的可能只需要一天),不过场地只有一个,所以不同的会议的时间申请不能够冲突.也就是说,前一个 ...
- The Stream of Corning 2( 权值线段树/(树状数组+二分) )
题意: 有两种操作:1.在[l,r]上插入一条值为val的线段 2.问p位置上值第k小的线段的值(是否存在) 特别的,询问的时候l和p合起来是一个递增序列 1<=l,r<=1e9:1< ...
- 牛客多校第3场 J 思维+树状数组+二分
牛客多校第3场 J 思维+树状数组+二分 传送门:https://ac.nowcoder.com/acm/contest/883/J 题意: 给你q个询问,和一个队列容量f 询问有两种操作: 0.访问 ...
- ZOJ 3157 Weapon --计算几何+树状数组
题意:给一些直线,问这些直线在直线x=L,x=R之间有多少个交点. 讲解见此文:http://blog.sina.com.cn/s/blog_778e7c6e0100q64a.html 首先将直线分别 ...
- HDU 6278 - Just h-index - [莫队算法+树状数组+二分][2018JSCPC江苏省赛C题]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6278 Time Limit: 6000/3000 MS (Java/Others) Memory Li ...
随机推荐
- REST设计风格:你写的 RESTful API 到第几层了?
理解REST 在理解其真正概念前,我们先来明确: REST它的核心思想是面向资源的抽象(相对于RPC就是面向过程抽象),它是一种设计风格的指导,而非具有较强约束的协议. REST源于Roy Thoma ...
- 记一次 .NET 某流媒体独角兽 API 句柄泄漏分析
一:背景 1. 讲故事 上上周有位朋友找到我,说他的程序CPU和句柄都在不断的增长,无回头趋势,查了好些天也没什么进展,特加wx寻求帮助,截图如下: 看的出来这位朋友也是非常郁闷,出问题还出两个,气人 ...
- 带你走进MySQL全新高可用解决方案-MGR
一.初识MGR 相信很多人对MGR这个词比较陌生,其实MGR(全称 MySQL Group Replication [MySQL 组复制])是Oracle MySQL于2016年12月发布MySQL ...
- Spring Cloud总结
restTemplate 消费者模块编写restTemplate配置类,即可在控制层调用提供者模块 // 配置类 @Configuration public class ApplicationCont ...
- 修改Windows7系统默认软件安装目录
Windows7系统默认软件安装目录都在C盘Program Files文件夹有时候我们需要把软件安装到其他地方,如果每次安装的时候都要重新选择一次十分麻烦,下面Windows7之家教你修改软件默认安装 ...
- 老司机带你体验SYS库多种新玩法
导读 如何更加愉快地利用sys库做一些监控? 快来,跟上老司机,体验sys库的多种新玩法~ MySQL5.7的新特性中,非常突出的特性之一就是sys库,不仅可以通过sys库完成MySQL信息的收集,还 ...
- MySQL-基础-2
MySQL数据库介绍 • MySQL是一种开放源代码的关系型数据库管理系统(RDBMS),MySQL数据库系统使用最常用的数据库管理语言--结构化查询语言(SQL)进行数据库管理. • MySQL的历 ...
- SpringMVC笔记(3)
一.SpringMVC 拦截器 1.1 快速入门 步骤 创建拦截器类实现HandlerInterceptor接口 public class MyInterceptor01 implements Han ...
- MySQL之连接查询和子查询
多表连接的基本语法 多表连接,就是将几张表拼接为一张表,然后进行查询 select 字段1, 字段2, ... from 表1 {inner|lift|right} join 表2 on 连接条件; ...
- Django——cookie保持登录
普通登录时,无法保持登录的状态,每一次请求时都需要重新登录. 而在登录时,生成cookie并保存在浏览器中,这样每次登录就会携带登录信息,就可以保持登录状态了. 操作cookie语法: # (1) 设 ...