[NOI 2014]起床困难综合症[二进制]
背景
21 世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳。作为一名青春阳光好少年,atm 一直坚持与起床困难综合症作斗争。通过研究相关文献,他找到了该病的发病原因:在深邃的太平洋海底中,出现了一条名为 drd 的巨龙,它掌握着睡眠之精髓,能随意延长大家的睡眠时间。正是由于 drd 的活动,起床困难综合症愈演愈烈,以惊人的速度在世界上传播。为了彻底消灭这种病,atm 决定前往海底,消灭这条恶龙。
描述
历经千辛万苦,atm 终于来到了 drd 所在的地方,准备与其展开艰苦卓绝的战斗。drd 有着十分特殊的技能,他的防御战线能够使用一定的运算来改变他受到的伤害。具体说来,drd 的防御战线由 n扇防御门组成。每扇防御门包括一个运算op和一个参数t,其中运算一定是OR,XOR,AND中的一种,参数则一定为非负整数。如果还未通过防御门时攻击力为x,则其通过这扇防御门后攻击力将变为x op t。最终drd 受到的伤害为对方初始攻击力x依次经过所有n扇防御门后转变得到的攻击力。
由于atm水平有限,他的初始攻击力只能为0到m之间的一个整数(即他的初始攻击力只能在0,1,...,m中任选,但在通过防御门之后的攻击力不受 m的限制)。为了节省体力,他希望通过选择合适的初始攻击力使得他的攻击能让 drd 受到最大的伤害,请你帮他计算一下,他的一次攻击最多能使 drd 受到多少伤害。
输入格式
第1行包含2个整数,依次为n,m,表示drd有n扇防御门,atm的初始攻击力为0到m之间的整数。接下来n行,依次表示每一扇防御门。每行包括一个字符串op和一个非负整数t,两者由一个空格隔开,且op在前,t在后,op表示该防御门所对应的操作, t表示对应的参数。
输出格式
一行一个整数,表示atm的一次攻击最多使 drd 受到多少伤害。
样例输入
3 10
AND 5
OR 6
XOR 7
样例输出
1
数据范围与约定
- n<=10^5,0<=m<=10^9,0<=t<=10^9 ,op一定为OR,XOR,AND 中的一种
样例解释
atm可以选择的初始攻击力为0~10。
假设初始攻击力为4,最终攻击力经过了如下计算:4 AND 5得到4,4 OR 6得到6,6 XOR 7得到1
类似的,我们可以计算出初始攻击力为1,3,5,7,9时最终攻击力为0,初始攻击力为0,2,4,6,8,10时最终攻击力为1,因此atm的一次攻击最多使 drd 受到的伤害值为1。
我们考虑最终选择的初始攻击力的二进制下的每一位
比较这一位是选0还是选1更优 如果 二者一样 则选0 因为这一位选0 给后面更大的可能


#include<iostream>
#include<cstdio>
using namespace std;
long long opt[1000010],a[1000010];
long long n,m,k,ans;
long long go(long long x)
{
for(long long i = 1; i <= n; i++)
{
if(opt[i] == 1) x = x&a[i];
if(opt[i] == 2) x = x|a[i];
if(opt[i] == 3) x = x^a[i];
}
return x;
}
int main()
{
scanf("%lld%lld",&n,&m);
for(long long i = 1; i <= n; i++)
{
char c[15];
scanf("%s%lld",c,&a[i]);
if(c[0] == 'A') opt[i] = 1;
if(c[0] == 'O') opt[i] = 2;
if(c[0] == 'X') opt[i] = 3;
}
long long MAXN;
k = go(0);
for(MAXN = 1; MAXN <= m; MAXN <<= 1);
for(;MAXN;MAXN >>= 1)
{
if(k & MAXN) continue;//选0更优
if(ans + MAXN <= m && (go(MAXN)&MAXN)) ans = ans + MAXN;//选1更优
}
printf("%lld",go(ans));
}
[NOI 2014]起床困难综合症[二进制]的更多相关文章
- [NOI 2014]起床困难综合症
Description 21 世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳.作为一名青春阳光好少年,atm 一直坚持与起床困难综合症作斗争.通过研究相关文献,他找 ...
- [NOI2014]起床困难综合症(二进制+贪心)
题目 [NOI2014]起床困难综合症 做法 先用全\(0\)和全\(1\)去运行一下,再在满足\(m\)的限制下,贪心地从高位到低位选择即可
- [NOI 2014] 起床困难综合征
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=3668 [算法] 从高位向低位贪心即可 时间复杂度 : O(30N) [代码] #in ...
- P2114 [NOI2014]起床困难综合症(二进制)
P2114 [NOI2014]起床困难综合症 我们开始设俩数,一个二进制表示全是1,另一个全是0(就是2147483647 和 0 辣) 蓝后跑一遍门 于是最后有4种情况 1->0,1-> ...
- 二进制拆位(贪心)【p2114】[NOI2014]起床困难综合症
Description 21世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳.作为一名青春阳光好少年,atm一直坚持与起床困难综合症作斗争.通过研究相关文献,他找到了 ...
- BZOJ3668: [Noi2014]起床困难综合症(贪心 二进制)
Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2708 Solved: 1576[Submit][Status][Discuss] Descript ...
- Luogu 睡觉困难综合征 ([NOI2014]起床困难综合症)
一.[NOI2014]起床困难综合症 题目描述 网址:https://daniu.luogu.org/problemnew/show/2114 大意: 有一条链,链上每一个节点包含一个位运算f 与 一 ...
- BZOJ-3668 起床困难综合症 位运算+贪心
faebdc学长杂题选讲中的题目...还是蛮简单的...位运算写的不熟练... 3668: [Noi2014]起床困难综合症 Time Limit: 10 Sec Memory Limit: 512 ...
- bzoj3668: [Noi2014]起床困难综合症
从高位到低位枚举期望的应该是ans最高位尽量取一.如果该数最高位为o的话能够取得1直接更新ans否则判断该位取1是否会爆m不会的话就加上. #include<cstdio> #includ ...
随机推荐
- C++ 与 Visual Studio 2022 和 WSL(五)——WSL2
Build and Debug C++ with WSL 2 Distributions and Visual Studio 2022 References Build and Debug C++ w ...
- WEB安全指南
说明:本文是Mozilla Web应用部署文档,对运维或者后端开发团队的部署行为进行指导.该部署安全规范内容充实,对于部署有很大意义.同时也涉及到了许多web前端应用安全的基本知识,如CSP, TOK ...
- [技术博客]大闸蟹的技术博客,通过gitlab api进行用户批量创建
技术博客--通过gitlab api批量注册用户 gitlab登录界面本身提供了register功能,但需要手工一个个添加,对于一次性会添加整个班级的学生的软工平台来说并不科学合理.使用gitlab ...
- zuul过滤器filter 的编写
通过上一节(zuul的各种配置)的学习,我们学会了zuul路由的各种配置,这一节我们来实现一下zuul的过滤器功能.那么为什么需要用到zuul的过滤器呢?我们知道zuul是我们实现外部系统统一访问的入 ...
- UVM RAL模型和内置seq
转载:UVM RAL模型:用法和应用_寄存器 (sohu.com) 在系统设计中通常会面临两大挑战:缩小技术节点的规模和上市时间(TTM,Time to Market).为了适应激烈的市场竞争,大多数 ...
- 无缓存交换 牛客网 程序员面试金典 C++ Python
无缓存交换 牛客网 程序员面试金典 C++ Python 题目描述 请编写一个函数,函数内不使用任何临时变量,直接交换两个数的值. 给定一个int数组AB,其第零个元素和第一个元素为待交换的值,请返回 ...
- linux初中级命令语言
Linux:开源免费.大部分软件都可以自由获取,同样功能的软件选择较少.主要是字符模式,命令行界面且发行版本较多,难以集中攻击. Xshell与xftp是什么? xshell是一个客户端软件,我们本地 ...
- vue-router 4 你真的熟练吗?
虽然 vue-router 4 大多数 API 保持不变,但是在 vue3 中以插件形式存在,所以在使用时有一定的变化.接下来就学习学习它是如何使用的. 一.安装并创建实例 安装最新版本的 vue-r ...
- Socket `accept queue is full ` 但是一个连接需要从SYN->ACCEPT
由于标题长度有限制,我把想要描述的问题再次描述下: 内核通常会为每一个LISTEN状态的Socket维护两个队列: 1 accept队列: listen()函数第二个参数BACKLOG指定,表示已完成 ...
- 编译静态库的方式使用spdlog和fmt
前言 spdlog++库,而且支持header only方式,但header only的使用方式会造成编译时长增加,所以这里简单描述一下,其编译静态库的方式. 又因为spdlog还依赖另一个开源库fm ...