原文链接:Writing worker queues, in Go

1.work.go

[root@wangjq queue]# cat work.go
package main import "time" type WorkRequest struct {
Name string
Delay time.Duration
}

2.collector.go

[root@wangjq queue]# cat collector.go
package main import (
"fmt"
"net/http"
"time"
) // A buffered channel that we can send work requests on.
var WorkQueue = make(chan WorkRequest, ) func Collector(w http.ResponseWriter, r *http.Request) {
// Make sure we can only be called with an HTTP POST request.
if r.Method != "POST" {
w.Header().Set("Allow", "POST")
w.WriteHeader(http.StatusMethodNotAllowed)
return
} // Parse the delay.
delay, err := time.ParseDuration(r.FormValue("delay"))
if err != nil {
http.Error(w, "Bad delay value: "+err.Error(), http.StatusBadRequest)
return
} // Check to make sure the delay is anywhere from 1 to 10 seconds.
if delay.Seconds() < || delay.Seconds() > {
http.Error(w, "The delay must be between 1 and 10 seconds, inclusively.", http.StatusBadRequest)
return
} // Now, we retrieve the person's name from the request.
name := r.FormValue("name") // Just do a quick bit of sanity checking to make sure the client actually provided us with a name.
if name == "" {
http.Error(w, "You must specify a name.", http.StatusBadRequest)
return
} // Now, we take the delay, and the person's name, and make a WorkRequest out of them.
work := WorkRequest{Name: name, Delay: delay} // Push the work onto the queue.
WorkQueue <- work
fmt.Println("Work request queued") // And let the user know their work request was created.
w.WriteHeader(http.StatusCreated)
return
}

3.worker.go

[root@wangjq queue]# cat worker.go
package main import (
"fmt"
"time"
) // NewWorker creates, and returns a new Worker object. Its only argument
// is a channel that the worker can add itself to whenever it is done its
// work.
func NewWorker(id int, workerQueue chan chan WorkRequest) Worker {
// Create, and return the worker.
worker := Worker{
ID: id,
Work: make(chan WorkRequest),
WorkerQueue: workerQueue,
QuitChan: make(chan bool)} return worker
} type Worker struct {
ID int
Work chan WorkRequest
WorkerQueue chan chan WorkRequest
QuitChan chan bool
} // This function "starts" the worker by starting a goroutine, that is
// an infinite "for-select" loop.
func (w *Worker) Start() {
go func() {
for {
// Add ourselves into the worker queue.
w.WorkerQueue <- w.Work select {
case work := <-w.Work:
// Receive a work request.
fmt.Printf("worker%d: Received work request, delaying for %f seconds\n", w.ID, work.Delay.Seconds()) time.Sleep(work.Delay)
fmt.Printf("worker%d: Hello, %s!\n", w.ID, work.Name) case <-w.QuitChan:
// We have been asked to stop.
fmt.Printf("worker%d stopping\n", w.ID)
return
}
}
}()
} // Stop tells the worker to stop listening for work requests.
//
// Note that the worker will only stop *after* it has finished its work.
func (w *Worker) Stop() {
go func() {
w.QuitChan <- true
}()
}

4.dispatcher.go

[root@wangjq queue]# cat dispatcher.go
package main import "fmt" var WorkerQueue chan chan WorkRequest func StartDispatcher(nworkers int) {
// First, initialize the channel we are going to but the workers' work channels into.
WorkerQueue = make(chan chan WorkRequest, nworkers) // Now, create all of our workers.
for i := ; i < nworkers; i++ {
fmt.Println("Starting worker", i+)
worker := NewWorker(i+, WorkerQueue)
worker.Start()
} go func() {
for {
select {
case work := <-WorkQueue:
fmt.Println("Received work requeust")
go func() {
worker := <-WorkerQueue fmt.Println("Dispatching work request")
worker <- work
}()
}
}
}()
}

5.main.go

[root@wangjq queue]# cat main.go
package main import (
"flag"
"fmt"
"net/http"
) var (
NWorkers = flag.Int("n", , "The number of workers to start")
HTTPAddr = flag.String("http", "127.0.0.1:8000", "Address to listen for HTTP requests on")
) func main() {
// Parse the command-line flags.
flag.Parse() // Start the dispatcher.
fmt.Println("Starting the dispatcher")
StartDispatcher(*NWorkers) // Register our collector as an HTTP handler function.
fmt.Println("Registering the collector")
http.HandleFunc("/work", Collector) // Start the HTTP server!
fmt.Println("HTTP server listening on", *HTTPAddr)
if err := http.ListenAndServe(*HTTPAddr, nil); err != nil {
fmt.Println(err.Error())
}
}

6.编译

[root@wangjq queue]# go build -o queued *.go

7.运行

[root@wangjq queue]# ./queued -n
Starting the dispatcher
Starting worker
Starting worker
Starting worker
Starting worker
Starting worker
Registering the collector
HTTP server listening on 127.0.0.1:

8.测试

[root@wangjq ~]# for i in {..}; do curl localhost:/work -d name=$USER -d delay=$(expr $i % )s; done

9.效果

[root@wangjq queue]# ./queued -n
Starting the dispatcher
Starting worker
Starting worker
Starting worker
Starting worker
Starting worker
Registering the collector
HTTP server listening on 127.0.0.1:
Work request queued
Received work requeust
Dispatching work request
worker1: Received work request, delaying for 1.000000 seconds
Work request queued
Received work requeust
Dispatching work request
worker2: Received work request, delaying for 2.000000 seconds
Work request queued
Received work requeust
Dispatching work request
worker4: Received work request, delaying for 3.000000 seconds
worker1: Hello, root!
worker2: Hello, root!
worker4: Hello, root!

go 多线程并发 queue demo的更多相关文章

  1. java多线程并发执行demo,主线程阻塞

    其中有四个知识点我单独罗列了出来,属于多线程编程中需要知道的知识: 知识点1:X,T为泛型,为什么要用泛型,泛型和Object的区别请看:https://www.cnblogs.com/xiaoxio ...

  2. Python2 socket 多线程并发 ThreadingTCPServer Demo

    # -*- coding:utf-8 -*- from SocketServer import TCPServer, StreamRequestHandler import traceback cla ...

  3. Python2 socket 多线程并发 TCPServer Demo

    #coding=utf-8 import socket import threading,getopt,sys,string opts, args = getopt.getopt(sys.argv[1 ...

  4. 用Queue控制python多线程并发数量

    python多线程如果不进行并发数量控制,在启动线程数量多到一定程度后,会造成线程无法启动的错误. 下面介绍用Queue控制多线程并发数量的方法(python3). # -*- coding: utf ...

  5. 多线程并发执行任务,取结果归集。终极总结:Future、FutureTask、CompletionService、CompletableFuture

    目录 1.Futrue 2.FutureTask 3.CompletionService 4.CompletableFuture 5.总结 ================正文分割线========= ...

  6. java中并发Queue种类与各自API特点以及使用场景!

    一 先说下队列 队列是一种数据结构.它有两个基本操作:在队列尾部加入一个元素,和从队列头部移除一个元素(注意不要弄混队列的头部和尾部) 就是说,队列以一种先进先出的方式管理数据,如果你试图向一个 已经 ...

  7. Java多线程-并发容器

    Java多线程-并发容器 在Java1.5之后,通过几个并发容器类来改进同步容器类,同步容器类是通过将容器的状态串行访问,从而实现它们的线程安全的,这样做会消弱了并发性,当多个线程并发的竞争容器锁的时 ...

  8. python多进程并发和多线程并发和协程

    为什么需要并发编程? 如果程序中包含I/O操作,程序会有很高的延迟,CPU会处于等待状态,这样会浪费系统资源,浪费时间 1.Python的并发编程分为多进程并发和多线程并发 多进程并发:运行多个独立的 ...

  9. Java多线程并发编程一览笔录

    线程是什么? 线程是进程中独立运行的子任务. 创建线程的方式 方式一:将类声明为 Thread 的子类.该子类应重写 Thread 类的 run 方法 方式二:声明实现 Runnable 接口的类.该 ...

随机推荐

  1. 2020想学习JAVA的同学看过来,最基础的编程CRUD你会了没?

    一 JDBC简介 Java DataBase Connectivity Java语言连接数据库 官方(Sun公司)定义的一套操作所有关系型数据库的规则(接口) 各个数据库厂商去实现这套接口 提供数据库 ...

  2. PHP 实例 - AJAX 与 XML-AJAX XML 实例

    PHP 实例 - AJAX 与 XML AJAX 可用来与 XML 文件进行交互式通信. AJAX XML 实例 下面的实例将演示网页如何通过 AJAX 从 XML 文件读取信息: 实例   Sele ...

  3. Python os.fstatvfs() 方法

    概述 os.fstatvfs() 方法用于返回包含文件描述符fd的文件的文件系统的信息,类似 statvfs().高佣联盟 www.cgewang.com Unix上可用. fstatvfs 方法返回 ...

  4. HTTP Request Method(十五种)

    序号 方法 描述 1 GET 请求指定的页面信息,并返回实体主体. 2 HEAD 类似于get请求,只不过返回的响应中没有具体的内容,用于获取报头 3 POST 向指定资源提交数据进行处理请求(例如提 ...

  5. 《Head First 设计模式》:单件模式

    正文 一.定义 单件模式确保一个类只有一个实例,并提供一个全局访问点. 要点: 定义持有唯一单件实例的类变量. 私有化构造,避免其他类产生实例. 对外提供获取单件实例的静态方法. 二.实现步骤 1.创 ...

  6. Mybatis insert 获取主键自增id

    Mybatis insert 返回自增主键 mysql 准备一张带有自增主键的表users 字段:id,name,phone sql <!--插入记录并获取刚插入记录的主键--> < ...

  7. 我用python远程探查女友每天的网页访问记录,她不愧是成年人!

    利用Python制作远程查看别人电脑的操作记录,与其它教程类似,都是通过邮件返回. 利用程序得到目标电脑浏览器当中的访问记录,生产一个文本并发送到你自己的邮箱,当然这个整个过程除了你把python程序 ...

  8. 从零搭建Spring Boot脚手架(2):增加通用的功能

    1. 前言 今天开始搭建我们的kono Spring Boot脚手架,首先会集成Spring MVC并进行定制化以满足日常开发的需要,我们先做一些刚性的需求定制,后续再补充细节.如果你看了本文有什么问 ...

  9. JS 移动端笔记

    移动端的网页特效     移动端触屏事件概述 触屏touch事件     touchstart 手指触摸到一个DOM元素时触发     touchmove 手指在一个DOM上滑动时触发     tou ...

  10. 敏捷工具:Scrum板与Kanban如何抉择?敏捷工具:Scrum板与Kanban如何抉择?

    Scrum板作为一种工具,主要应用于Scrum团队的敏捷项目管理,能够帮助团队更新任务进度,促进团队信息共享,及时发现任务过程中的异常现象,从而查漏补缺.团队在每日站会时会通过Scrum板来直观地展示 ...