很长时间没有更新个人博客了,因为前一段时间在换工作,入职了一家新的公司,刚开始需要适应一下新公司的节奏,开始阶段也比较忙。新公司还是有一定的技术气氛的,每周都会有技术分享,而且还会给大家留一些思考题,这次的思考题就是让我们回去实现一个Base32的编码和解码。

这可怎么办?Base64也就知道个大概,Base32怎么实现呀?回去一顿恶补,查资料,看Base64源码,最后终于将Base32实现了。

Base64是干什么用的

要写Base32,就要先理解Base64,那么Base64是干什么用的呢?为什么要有Base64呢?这个是根本原因,把Base64产生的过程搞清楚了,那么Base32,我们就可以依葫芦画瓢了。

我们知道在计算机中,数据的单位是字节byte,它是由8位2进制组成的,总共可以有256个不同的数。那么这些二进制的数据要怎么进行传输呢?我们要将其转化为ASCII字符,ASCII字符中包含了33个控制字符(不可见)和95个可见字符,我们如果能将这些二进制的数据转化成这95个可见字符,就可以正常传输了。于是,我们从95个字符中,挑选了64个,将2进制的数据转化为这个64个可见字符,这样就可以正常的传输了,这就是Base64的由来。那这64个字符是什么呢?

这就是Base64的那64个字符。那么如果我们要实现Base32呢?对了,我们要挑选出32个可见字符,具体如下:

private static final char[] toBase32 = {
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
'0', '1', '2', '3', '4', '5'
};

我们挑选了大写的A-Z,再加上0-5,一共32个可见字符。

Base32是什么规则

好了,32个可见字符已经选好了,接下来就是将2进制转化成这32个字符的过程。我们先来看一下Base64是一个什么样的转化过程,我们一个字节是8位,而64是2的6次方,也即是一个字节(8位)的数据,我们要截取其中的6位进行编码,取到其可见字符。那么剩余的2位数怎么办呢?它将和下一个自己的前4位组成一个6位的数据进行编码。那么我们需要多少字节才能得到一个完整的不丢位的编码呢?我们要取6和8的最小公倍数,也就是24,24位恰好是3个字节,如果取6位进行编码,则可以取到4个编码。我们看看下面的图就可以更好地理解了,

  • M,a,n对应的ASCII码分别是77,97,110。
  • 对应的二进制是01001101,01100001,01101110。
  • 然后我们按照6位截取,恰好能够截取4个编码,对应的6位二进制分别为:010011,010110,000101,101110。
  • 对应的64位编码为:T,W,F,u。

同理,如果我们要实现Base32怎么办呢?32是2的5次方,那么我们再进行2进制截位时,要一次截取5位。那么一个字节8位,截取了5位,剩下的3位怎么办?同理和下一个字节的前2位组成一个新的5位。那么多少个字节按照5位截取才能不丢位呢?我们要取5和8的最小公倍数,40位,按照5位截取,正好得到8个编码。40位,正好5个字节,所以我们要5个字节分为一组,进行Base32的编码。如下图:

对比前面的Base64,Base32就是按照5位去截取,然后去编码表中找到对应的字符。好了,原理我们明白了,下面进入程序阶段。

写程序阶段

原理明白了,程序怎么写呢?这也就是程序猿的价值所在,把现实中的规则、功能、逻辑用程序把它实现。但是实现Base32也是比较难的,不过有先人给我们留下了Base64,我们参照Base64去实现Base32就容易多了。

Base32编码

首先,我们要根据输入字节的长度,确定返回字节的长度,以上面为例,输入字节的长度是5,那么Base32转码后的字节长度就是8。那么如果输入字节的长度是1,返回结果的字节长度是多少呢?这就需要补位了,也就是说输入字节的长度不是5的倍数,我们要进行补位,将其长度补成5的倍数,这样编码以后,返回字节的长度就是8的倍数。这样做,我们不会丢失信息,比如,我们只输入了一个字节,是8位,编码时,截取了前5位,那么剩下的后3位怎么办?不能舍弃吧,我们要在其后面补足40位,补位用0去补,前面截取有剩余的位数再加上后面补位的0,凑成5位,再去编码。其余的,全是0的5位二进制,我们编码成“=”,这个和Base64是一样的。

好了,我们先来看看编码后返回字节的长度怎么计算。

//返回结果的数组长度
int rLength = 8 * ((src.length + 4) / 5);
//返回结果
byte[] result = new byte[rLength];
  • 其中src是输入的字节数组;
  • 返回长度的公式我们要仔细看一下,对5取整,再乘以8,这是一个最基本的操作,我们用上面的例子套一下,输入字节的长度是5个字节,8*(5/5) = 8,需要返回8个字节。我们再来看看加4的作用,比如我们输入的是1个字节,那么返回几个字节呢?按照前面的要求,如果二进制长度不满40位,要补满40位,也就是输入字节的长度要补满成5的整数倍。这里先加4再对5取整,就可以补位后可以进行完整编码的个数,然后再乘以8,得到返回的字节数。大家可以随便想几个例子,验证一下结果对不对。
  • 然后我们定义返回结果的数组。

返回结果的数组长度已经确定了,接下来我们做什么呢?当然是编码的工作了,这里我们分为两个步骤:

  1. 先处理可以正常进行编码的那些字节,也就是满足5的倍数的那些字节,这些字节可以进行5字节到8字节转换的,不需要进行补位。
  2. 然后处理最后几位,这些是需要补位的,将其补成5个字节。

编码的步骤已经确定了,下面要确定可以正常编码的字节长度,以及需要补位的长度,如下:

//正常转换的长度
int normalLength = src.length / 5 * 5;
//补位长度
int fillLength = (5 - (src.length % 5)) % 5;

又是两个计算公式,我们分别看一下:

  1. 可以正常编码的字节长度,对5取整,再乘以5,过滤掉最后不满足5的倍数的字节,这些过滤掉的字节需要补位,满足5个字节;
  2. 这一步就是计算最后需要补几位才能满足5的倍数,最后可以得到需要补位的长度,如果输入字节的长度恰好是5的倍数,不需要补位,则计算的结果是0,大家可以验证一下这两个公式。

接下来,我们处理一下可以正常编码的字节,如下:

//输入字节下标
int srcPos = 0;
//返回结果下标
int resultPos = 0;
while (srcPos < normalLength) {
long bits = ((long)(src[srcPos++] & 0xff)) << 32 |
(src[srcPos++] & 0xff) << 24 |
(src[srcPos++] & 0xff) << 16 |
(src[srcPos++] & 0xff) << 8 |
(src[srcPos++] & 0xff); result[resultPos++] = (byte) toBase32[(int)((bits >> 35) & 0x1f)];
result[resultPos++] = (byte) toBase32[(int)((bits >> 30) & 0x1f)];
result[resultPos++] = (byte) toBase32[(int)((bits >> 25) & 0x1f)];
result[resultPos++] = (byte) toBase32[(int)((bits >> 20) & 0x1f)];
result[resultPos++] = (byte) toBase32[(int)((bits >> 15) & 0x1f)];
result[resultPos++] = (byte) toBase32[(int)((bits >> 10) & 0x1f)];
result[resultPos++] = (byte) toBase32[(int)((bits >> 5) & 0x1f)];
result[resultPos++] = (byte) toBase32[(int)(bits & 0x1f)]; }
  1. 我们先定义输入字节的下标和返回结果的下标,用作取值与赋值;
  2. 再写个while循环,只要输入的字节下标在正常转换的范围内,就可以正常的编码;
  3. 接下来看看while循环的处理细节,我们先要将5个字节拼成一个40位的二进制,在程序中,我们通过位移运算和 | 或运算得到一个long型的数字,当然它的二进制就是我们用5个字节拼成的。
  4. 这里有个坑要和大家说明一下,我们第一个字节位移的时候用long转型了,为什么?因为int型在Java中占4个字节,32位,我们左移32位后,它会回到最右侧的位置。而long占64位,我们左移32位是不会循环的。这一点大家要格外注意。
  5. 接下来就是将这40位的二进制进行分拆,同样通过位移操作,每次从左侧截取5位,我们分别向右移动35、30、25、20、15、10、5、0,然后将其和0x1f进行与操作,0x1f是一个16进制的数,其二进制是0001 1111,对了,就是5个1,移位后和0x1f进行与操作,只留取最右侧的5位二进制,并计算其数值,然后从32位编码表中找到对应的字符。

可以正常编码的部分就正常结束了,大家要多多理解位移符号的运用。接下来,我们再看看结尾字节的处理。先上代码:

if (fillLength > 0) {
switch (fillLength) {
case 1:
int normalBits1 = (src[srcPos] & 0xff) << 24 |
(src[srcPos+1] & 0xff) << 16 |
(src[srcPos+2] & 0xff) << 8 |
(src[srcPos+3] & 0xff);
result[resultPos++] = (byte) toBase32[(normalBits1 >> 27) & 0x1f];
result[resultPos++] = (byte) toBase32[(normalBits1 >> 22) & 0x1f];
result[resultPos++] = (byte) toBase32[(normalBits1 >> 17) & 0x1f];
result[resultPos++] = (byte) toBase32[(normalBits1 >> 12) & 0x1f];
result[resultPos++] = (byte) toBase32[(normalBits1 >> 7) & 0x1f];
result[resultPos++] = (byte) toBase32[(normalBits1 >> 2) & 0x1f];
result[resultPos++] = (byte) toBase32[(normalBits1 << 3) & 0x1f];
result[resultPos++] = '=';
break;
case 2:
int normalBits2 = (src[srcPos] & 0xff) << 16 |
(src[srcPos+1] & 0xff) << 8 |
(src[srcPos+2] & 0xff);
result[resultPos++] = (byte) toBase32[(normalBits2 >> 19) & 0x1f];
result[resultPos++] = (byte) toBase32[(normalBits2 >> 14) & 0x1f];
result[resultPos++] = (byte) toBase32[(normalBits2 >> 9) & 0x1f];
result[resultPos++] = (byte) toBase32[(normalBits2 >> 4) & 0x1f];
result[resultPos++] = (byte) toBase32[(normalBits2 << 1) & 0x1f];
result[resultPos++] = '=';
result[resultPos++] = '=';
result[resultPos++] = '=';
break;
case 3:
int normalBits3 = (src[srcPos] & 0xff) << 8 |
(src[srcPos+1] & 0xff);
result[resultPos++] = (byte) toBase32[(normalBits3 >> 11) & 0x1f];
result[resultPos++] = (byte) toBase32[(normalBits3 >> 6) & 0x1f];
result[resultPos++] = (byte) toBase32[(normalBits3 >> 1) & 0x1f];
result[resultPos++] = (byte) toBase32[(normalBits3 << 4) & 0x1f];
result[resultPos++] = '=';
result[resultPos++] = '=';
result[resultPos++] = '=';
result[resultPos++] = '=';
break;
case 4:
int normalBits4 = (src[srcPos] & 0xff) ;
result[resultPos++] = (byte) toBase32[(normalBits4 >> 3) & 0x1f];
result[resultPos++] = (byte) toBase32[(normalBits4 << 2) & 0x1f];
result[resultPos++] = '=';
result[resultPos++] = '=';
result[resultPos++] = '=';
result[resultPos++] = '=';
result[resultPos++] = '=';
result[resultPos++] = '=';
break;
}
}
  1. fillLength就是需要补位的位数,如果等于0,我们就不需要补位了。大于0就需要进行补位。
  2. 需要补位的情况,我们分为4种,分别为:补1位、补2位、补3位和补4位。
  3. 我嗯先看看补1位的情况,需要补1位,说明之前剩下4个字节,我们先将这4个字节拼起来,那么第一个字节要向左移动24位,这个和正常情况下第一个字节向左移动的位数是不一样的。剩余的字节分别向左移动相应的位数,大家可以参照程序计算一下。
  4. 然后将得到的32位二进制数,从最高位每次截取5位,每次向右移动位数分别为27、22、17、12、7、2,注意,最后剩下2位,不足5位,我们要向左移动3位。移位后要和0x1f进行与操作,这个作用和前面是一样的,这里不赘述了。然后将得到的数字在32位编码表中,去除对应的字符。
  5. 剩下的位数我们统一使用=进行补位。
  6. 其他的需要补1位、补2位和补3位的情况,我们重复步骤3-步骤5,里边具体的移动位数有所区别,需要大家仔细计算。

整个的编码过程到这里就结束了,我们将result数组返回即可。

总结

到这里,Base32的编码就实现了,大家可以运行一下,这里就不演示了。整个的实现过程大家感觉怎么样,我们总结一下,

  1. 原理,不知道其原理,我们就没有办法写程序。
  2. 定义32位字符编码表,大家可以根据个人喜好进行定义,没有标准,只要是可见字符就可以。
  3. 写程序时,要注意正常位数的计算,补位位数的计算,以及左移右移,都是需要大家仔细思考的。

好了,Base32编码的过程就结束了,还缺少解码的过程,我们有时间再补上吧~

都知道Base64,Base32你能实现吗?的更多相关文章

  1. python之MD5、base64\base32解密

    # -*- coding:utf-8 -*- import hashlib import base64 # 求最大公约数gys # def gys(m, n): # c = 1 # while(c ! ...

  2. 为什么加密后的数据往往都是base64输出而不是hex16进制输出

    通常加密后的数据都是字节数组,比如流行的aes128对称加密,还有Rsa非对称加密,加密后得到了一个字节数组,这个字节数组存在内存中,往往我们需要输出得到我们人眼能看到的字符. 加密aes(xxx) ...

  3. springboot ResponseEntity<byte[]> 下载文件 byte 都变成base64

    因为spring boot消息转换器 ,全部将数据转换为json格式,包括文件的byte数据 关于spring boot 的消息转换器见:https://www.jianshu.com/p/ffe56 ...

  4. Bugku-CTF加密篇之贝斯家族(@iH<,{bdR2H;i6*Tm,Wx2izpx2!)

    贝斯家族 @iH<,{bdR2H;i6*Tm,Wx2izpx2!  

  5. Java 里 如何使用Base64,网上都是废物的说法

    百度搜索Java里如何使用Base64,结果很多文章都是让引用第三方Jar包,我靠我想了一下 他妈的Java里连这个都不提供,就直接忽略里那些废物的文章.继续搜索,算是找到答案: Java8以后 官方 ...

  6. 通过HTML5的Drag and Drop生成拓扑图片Base64信息

    HTML5 原生的 Drag and Drop是很不错的功能,网上使用例子较多如 http://html5demos.com/drag ,但这些例子大部分没实际用途,本文将搞个有点使用价值的例子,通过 ...

  7. 基于HTML5的Drag and Drop生成图片Base64信息

    HTML5的Drag and Drop是很不错的功能,网上使用例子较多如 http://html5demos.com/drag ,但这些例子大部分没实际用途,本文将搞个有点使用价值的例子,通过Drag ...

  8. 为什么有的代码要用 base64 进行编码

    一.1.传输信道只支持ASCII字符,不方便传输二进制流的场合. 2.含有非ASCII字符,容易出现编码问题的场合. 3.简易的掩人耳目.至少非开发人一眼看不出来是啥. 二.Base64主要用于将不可 ...

  9. Java 处理图片 base64 编码的相互转换

    哈喽大家好我是刘德华. 今天项目优化了一下上传头像的功能.采用 imagecropper 插件完成裁剪图片的效果. 这个插件裁剪完的图片都是 base64 加密的字符串,上传头像也就涉及到了如何把加密 ...

随机推荐

  1. 我用 go-zero 一周实现了一个中台系统,已开源!

    作者:Jack 最近发现golang社区里出了一个新星的微服务框架,来自好未来,光看这个名字,就很有奔头,之前,也只是玩过go-micro,其实真正的还没有在项目中运用过,只是觉得 微服务,grpc ...

  2. UWP ListView添加分割线

    先看效果: 我并没有找到有设置ListView分割线的属性 下面是一个比较简单的实现,如果有同学有更好的实现,欢迎留言,让我们共同进步.我的叙述不一定准确 实现的方法就是在DataTemplate里包 ...

  3. UWP 自定义RadioButton实现Tab底部导航

    先看效果: 参照Android的实现方式用RadioButton来实现,但是Uwp的RadioButton并没有安卓的Selector选择器 下面是一个比较简单的实现,如果有同学有更好的实现,欢迎留言 ...

  4. [从源码学设计]蚂蚁金服SOFARegistry 之 LocalDataServerChangeEvent及数据同步

    [从源码学设计]蚂蚁金服SOFARegistry 之 LocalDataServerChangeEvent及数据同步 目录 [从源码学设计]蚂蚁金服SOFARegistry 之 LocalDataSe ...

  5. 自定义 demo 集合

    各种写着玩的自定义控件demo 有时网上看到一些比较有意思的开源项目,有时间的话就会自己也撸一个出来,但是一般只关注实现样式.动画等,不会太去细致完整地完成,俗称占个坑~ 持续更新中... githu ...

  6. ArrayList哪种循环效率更好你真的清楚吗

    ArrayList简介 声明:以下内容都是基于jdk1.8的 ArrayList 是一个数组队列,相当于 动态数组.与Java中的数组相比,它的容量能动态增长.它继承于AbstractList,实现了 ...

  7. Linux嵌入式学习-交叉编译openssl

    利用arm-none-linux-gnueabi-gcc交叉编译openssl,生成静态库文件libcrypto.a ,libssl.a 1.从openssl官网下载openssl最新版本,我下载的是 ...

  8. E-BOOK-TINY6410-LCD的使用

    电子书需要通过屏幕显示出来,首先写了LCD模块.代码上传到了 github https://github.com/qq2216691777/E-book 本次完善了lcd模块的程序.可以适用在其他地方 ...

  9. 发起一个开源项目:基于 .NET 的博客引擎 fluss

    今天我们发起一个开源项目,它的名字叫 fluss,fluss 是 river 的德语. 百川归海,每一个博客就如一条河流,输入的是文字,流出的是知识,汇入的是知识的汪洋大海. 川流不息,fluss 是 ...

  10. 数据库分库分表容量划分建议参考阿里云DRDS原则

    做分库分表的时候 一直想知道分库分表容量的最优规则有什么好的建议,以下是参考阿里云 DRDS 分库分表的规则,还是有一定的参考意义 .