matplotlib学习日记(八)----完善统计图
(一)再说legend()
import matplotlib.pyplot as plt
import numpy as np x = np.arange(0, 2.1, 0.1)
y = np.power(x, 3)
y1 = np.power(x, 2)
y2 = np.power(x,1) plt.plot(x, y, ls="-", lw=2, label="$x^{3}$")
plt.plot(x, y1, ls="-", lw=2, c="r", label="$x^{2}$")
plt.plot(x, y2, ls="-", lw=2, c="y", label="$x^{1}$") plt.legend(loc="upper left", bbox_to_anchor=(0.05, 0.95), ncol=3,
title="power function", shadow=True, fancybox=True)
'''
loc------->位置参数
bbox_to_anchor------->线框位置参数,四元元祖
fancybox------>线框圆角
'''
plt.show()
(二)再说title()
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(-2, 2, 1000)
y = np.exp(x) plt.plot(x, y, ls="-", lw=2, color="g") plt.title("center demo")
plt.title("Left Demo", loc="left", fontdict={"size":"xx-large", "color":"r", "family":"Times New Roman"})
#title的参数主要集中在位置和字体风格的设置,字体风格可以用字典也可以像下面一样用属性
plt.title("right demo", loc = "right", family="Comic Sans MS",size=20, style="oblique", color="c")
plt.show()
(三)xlim的逆序实现
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
mpl.rcParams["font.sans-serif"] = ["LiSu"]
mpl.rcParams["axes.unicode_minus"] = False
time = np.arange(1, 11, 0.5)
machinePower = np.power(time, 2)+.7 plt.plot(time, machinePower, ls="-", lw=2, c="r") plt.xlim(10, 1)
#实现xlim的逆序
plt.xlabel("使用年限")
plt.ylabel("机器功率")
plt.title("机器损耗曲线")
plt.grid(ls=":", lw=1, color="gray", alpha=.6)
plt.show()
(四)带表格的饼状图
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
mpl.rcParams["font.sans-serif"] = ["SimHei"]
mpl.rcParams["axes.unicode_minus"] = False
labels = ["A难度水平", "B难度水平", "C难度水平", "D难度水平"]
students = [0.35, 0.15, 0.20, 0.30]
colors = ["#377eb8", "#4daf4a", "#984ea3", "#ff7f00"]
explode = [0.1, 0.1, 0.1, 0.1]
plt.pie(students,explode=explode,labels=labels,autopct="%3.1f%%",startangle=45,shadow=True,colors=colors)
'''
explode----->饼边缘偏离半径的百分比,出现分离的原因
shadow------>阴影
'''
plt.title("选择不同难度测试试卷的学生占比") colLabels = ["A难度水平", "B难度水平", "C难度水平", "D难度水平"]
rowLabels = ["学生选择试卷人数"] studentValues = [[350, 150, 200, 300]]
colColors = ["#377eb8", "#4daf4a", "#984ea3", "#ff7f00"]
plt.table(cellText=studentValues, cellLoc="center", colWidths=[0.1]*4, colLabels=colLabels,
colColours=colColors, rowLabels=rowLabels, rowLoc="center", loc="upper left")
'''
cellText-------->表格中的数值,按照行排列
cellLoc--------->表格中的数据对齐位置
colWidth-------->每列的宽度
colLable-------->每列的列名称
rowColours------>每列的颜色
rowLabels------->每行的名称
rowLoc---------->行名称对齐方式
loc------------->表格在画布中的位置
'''
plt.show()
matplotlib学习日记(八)----完善统计图的更多相关文章
- matplotlib学习日记(三)------简单统计图
(一)函数bar()---------绘制柱状图 import matplotlib as mpl import matplotlib.pyplot as plt mpl.rcParams[" ...
- matplotlib学习日记(九)-图形样式
(一)刻度线定位器和刻度格式器的使用方法 import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker impor ...
- matplotlib学习日记(四)-绘制直方统计图形
(一)柱状图-应用在定性数据的可视化场景或者离散型数据,条形图和柱状图相似,只不过是函数barh import matplotlib as mpl import matplotlib.pyplot a ...
- matplotlib学习日记(一)------图表组成元素
1.使用函数绘制matplotlib的图表组成元素 (1)函数plot---变量的变化趋势 import matplotlib.pyplot as plt import numpy as np x ...
- matplotlib学习日记(十)-划分画布的主要函数
(1)函数subplot()绘制网格区域中的几何形状相同的子区布局 import matplotlib.pyplot as plt import numpy as np '''函数subplot的介绍 ...
- matplotlib学习日记(十一)---坐标轴高阶应用
(一)设置坐标轴的位置和展示形式 (1)向画布中任意位置添加任意数量的坐标轴 ''' 通过在画布的任意位置和区域,讲解设置坐标轴的位置和坐标轴的展示形式的实现方法, 与subplot,subplots ...
- matplotlib学习日记(十)-共享绘图区域的坐标轴
(1)共享单一绘图区域的坐标轴 ''' 上一讲介绍了画布的划分,有时候想将多张图放在同一个绘图区域, 不想在每个绘图区域只绘制一幅图形,这时候借助共享坐标轴的方法实现在一个绘图区 绘制多幅图形的目的. ...
- matplotlib学习日记(七)---误差棒图
(一)误差棒图----误差置信区间的表示 import matplotlib.pyplot as plt import numpy as np x = np.linspace(0.1, 0.6, 10 ...
- matplotlib学习日记(六)-箱线图
(一)箱线图---由一个箱体和一对箱须组成,箱体是由第一个四分位数,中位数和第三四分位数组成,箱须末端之外的数值是离散群,主要应用在一系列测量和观测数据的比较场景 import matplotlib ...
随机推荐
- LeetCode 刷题总结
LeetCode上的题很不错,都短小精悍. 先说说我自己.本科一直都是偏硬件,做些单片机.FPGA的东西.本科毕业设计写了个Android APP,控制外围电路(一个小车).可以通过Android手机 ...
- 【2020.12.03提高组模拟】A组反思
估计:40+10+0+0=50 实际:40+10+0+0=50 rank40 T1 赛时看到\(n,m\leq9\),我当机立断决定打表,暴力打了几个点之后发现在\(n\ne m\)且\(k\ne0\ ...
- Jmeter代理服务器录制脚本--浏览器拦截访问链接
在 Jmeter性能测试的过程中您是否会遇到代理服务器无法打开浏览器,无法录制脚本的情况呢? 在测试过程中,我也遇到过这样的问题,希望能帮到正在找寻答案的你.... Jmeter录制脚本时,跟http ...
- Java读书计划和分享
写在前面 为什么要写这些呢? 接触java已经有三年多了,感触颇多,比如从0到60,只要勤实践.勤思考,很快就可以入门,从60分到满分极致,则单单不是凭借工作年限或者什么就可以.曾经也有过一段迷茫时期 ...
- 第9章 Python文件操作目录
第9章 Python文件操作 第9.1节 Python的文件打开函数open简介 第9.2节 Python的文件打开函数open详解 第9.3节 Python的文件行读取:readline 第9.4节 ...
- Get请求Test
一.新建测试套 作为管理接口,可按功能分类,也可按业务逻辑分类,根目录下最多一级子目录.运行接口时,可按测试套为单位,整体运行. 二.选择请求类型,输入接口地址 根据接口文档中提供的接口请求类型及地址 ...
- Python调用云服务器AWVS13API接口批量扫描(指哪打哪)
最近因为实习的原因,为了减少一部分的工作量,在阿里云服务器上搭建了AWVS扫描器 方便摸鱼 但是发现AWVS貌似没有批量添加的方法,作者只好把整理的URL.txt捏了又捏 手动输入是不可能手动输入的, ...
- Eclipse配置反编译
Eclipse配置反编译 之前用IDEA一直让我很喜欢的点就是,什么东西都自动集成,下载.但是终归是学(po)习(jie)版,在正式企业开发中,要小心版权的问题(公司给你买了当我没说).抛开插件能 ...
- vue中监视对象内部变化的三种方法
一,对整个对象监视 watch:{ obj:{ handler(newV,oldV){ console.log('obj changed') }, deep: true,//深度遍历 immediat ...
- 利用神经网络算法的C#手写数字识别(一)
利用神经网络算法的C#手写数字识别 转发来自云加社区,用于学习机器学习与神经网络 欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwri ...