题目描述

一道简单DP优化调了好久qwq

首先分析题目,发现每次从一边取贝壳是完全没用的,此题本质就是将区间分成数个区间,使区间价值和最大。

可以发现一个性质,那就是最优解的每个区间的两端点一定相同且为选取的\(s_0\)。因为如果区间两端点的值不同,那么完全可以将多余的值分为另一个区间使价值和更大。

所以可以写出简单的dp式:

\(dp[i] = max(dp[j-1] + s[i] * (sum[i] - sum[j]+1)^2) \quad (s[j] == s[i])\)

其中\(sum[i]\)为1…i中\(s[i]\)的个数,可以简单的\(O(1)\)维护,所以总复杂度\(O(n^2)\)

观察单调性,发现对于决策a,b\((a<b)\)如果在k处a比b优,那么在k之后a也一定比b优,而k可以通过二分\(O(log_n)\)求出

所以可以使用单调栈维护最优决策,对于每次决策,如果栈顶不优了就弹出栈顶。同时,为了维护栈的单调性,每次入栈z时,如果z与栈顶元素的分界点\(k_1\)比栈顶与栈顶的下一个元素的分界点\(k_2\)靠后,那么便可以弹出栈顶元素。

/**************************************************************
Problem: 4709
User: liuxinyuan
Language: C++
Result: Accepted
Time:328 ms
Memory:3144 kb
****************************************************************/ #include <algorithm>
#include <cstdio>
#include <iostream>
#include <stack>
#include <vector>
#define gc getchar
#define il inline
#define re register
#define LL long long
#define mid(l, r) (((l) + (r)) >> 1)
#define sqr(x) (1ll * (x) * 1ll * (x))
#define m_p(x, y) make_pair(x, y)
using namespace std;
template <typename T>
void rd(T &s)
{
s = 0;
bool p = 0;
char ch;
while (ch = gc(), p |= ch == '-', ch < '0' || ch > '9')
;
while (s = s * 10 + ch - '0', ch = gc(), ch >= '0' && ch <= '9')
;
s *= (p ? -1 : 1);
}
template <typename T, typename... Args>
void rd(T &s, Args &... args)
{
rd(s);
rd(args...);
}
const int MAXM = 10005;
const int MAXN = 100050;
vector<int> sta[MAXM];
LL dp[MAXN];
int s[MAXN];
int cnt[MAXM], sum[MAXN];
int n;
il LL cal(int x, int y)
{
return dp[x - 1] + s[x] * 1ll * y * 1ll * y;
}
int lower(int a, int b)
{
int v = s[a];
int l = 1, r = cnt[v], ans = cnt[v] + 1;
while (l <= r)
{
int m = mid(l, r);
if (cal(a, m - sum[a] + 1) >= cal(b, m - sum[b] + 1))
ans = m,
r = m - 1;
else
l = m + 1;
}
return ans;
}
int main()
{
int v;
rd(n);
for (int i = 1; i <= n; ++i)
{
rd(s[i]);
sum[i] = ++cnt[s[i]];
}
for (int i = 1; i <= n; ++i)
{
v = s[i];
while (sta[v].size() >= 2 && lower(sta[v][sta[v].size() - 2], sta[v][sta[v].size() - 1]) < lower(sta[v][sta[v].size() - 1], i))
sta[v].pop_back();
sta[v].push_back(i);
while (sta[v].size() >= 2 && lower(sta[v][sta[v].size() - 2], sta[v][sta[v].size() - 1]) <= sum[i])
sta[v].pop_back();
dp[i] = cal(sta[v][sta[v].size() - 1], sum[i] - sum[sta[v][sta[v].size() - 1]] + 1);
// cout << i << " " << sta[v][sta[v].size() - 1] << endl;
}
// for (int i = 1; i <= n; ++i)
printf("%lld", dp[n]);
return 0;
}

题解 BZOJ4709的更多相关文章

  1. bzoj4709: [Jsoi2011]柠檬 斜率优化

    题目链接 bzoj4709: [Jsoi2011]柠檬 题解 斜率优化 设 \(f[i]\) 表示前 \(i\)个数分成若干段的最大总价值. 对于分成的每一段,左端点的数.右端点的数.选择的数一定是相 ...

  2. 【BZOJ4709】柠檬(动态规划,单调栈)

    [BZOJ4709]柠檬(动态规划,单调栈) 题面 BZOJ 题解 从左取和从右取没有区别,本质上就是要分段. 设\(f[i]\)表示前\(i\)个位置的最大值. 那么相当于我们枚举一个前面的位置\( ...

  3. 【BZOJ4709】[Jsoi2011]柠檬 斜率优化+单调栈

    [BZOJ4709][Jsoi2011]柠檬 Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,0 ...

  4. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  5. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  6. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  7. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  8. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  9. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

随机推荐

  1. python监控服务器应用日志,推送钉钉机器人,实时关注日志异常

    生产环境多台服务器上部署了多个应用,日志出现报错时,无法及时反馈到开发人员.部署一个大型的运维监控应用,不但耗资源,而且配置也不简单. 简简单单写个python脚本来监控服务器日志就简单多了,废话不多 ...

  2. mysql 5.7.13 安装配置方法

    linux环境Mysql 5.7.13安装教程分享给大家,供大家参考,具体内容如下: 1系统约定 安装文件下载目录:/data/software Mysql目录安装位置:/usr/local/mysq ...

  3. Arrays.sort() ----- DualPivotQuicksort

    Arrays.sort() ----- DualPivotQuicksort DualPivotQuicksort是Arrays.sort()对基本类型的排序算法,它不止使用了双轴快速排序,还使用了T ...

  4. 《闲扯Redis七》Redis字典结构的底层实现

    一.前言 上节<闲扯Redis六>Redis五种数据类型之Hash型 中说到 Hash(哈希对象)的底层实现有: 1.ziplist 编码的哈希对象使用压缩列表作为底层实现 2.hasht ...

  5. 前端学习(四):body标签(二)

    进击のpython ***** 前端学习--body标签 接着上一节,我们看一下还有没有什么网址 果不其然,在看到新闻类的网址的时候 我们发现还有许多的不一样的东西! 使用ul,添加新闻信息列表 这个 ...

  6. state实例

    States是SaltStack中的配置语言,在日常进行配置管理时需要编写大量的States文件. 比如我们需要安装一个包,然后管理一个配置文件,最后保证某个服务正常运行. 这里就需要我们编写一些st ...

  7. MySQL Front远程连接数据库

    连接前需要先配置一下服务器端的数据库 进入mysql数据库,选择mysql mysql> use mysql; 选择 host 表 mysql> select host from user ...

  8. ES5---Proxy的理解的使用

    定义:Proxy原意为“代理”,在这可以理解为代理/拦截器的意思.Proxy在一个目标对象前放置了一个拦截,凡是外界对该对象的访问,都必须通过这层拦截,所以Proxy可以对外界的访问进行过滤和改写. ...

  9. 深入理解Spring AOP 1.0

    本文相关代码(来自官方源码spring-test模块)请参见spring-demysify org.springframework.mylearntest包下. 统称能够实现AOP的语言为AOL,即( ...

  10. MVC + EFCore 项目实战 - 数仓管理系统8 - 数据源管理下--数据源预览

    上篇我们完成了数据源保存功能,并顺便看了保存后的数据源列表展示功能. 本篇我们开始开发预览功能,用户预览主要步骤: 1.点击数据源卡片预览按钮 2.查看数据源包含的表 3.点击表名,预览表中数据   ...