文章来自:微信公众号【机器学习炼丹术】。一个ai专业研究生的个人学习分享公众号

文章目录:

torchvision

官网上的介绍(翻墙):The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision.

翻译过来就是:

torchvision包由流行的数据集、模型体系结构和通用的计算机视觉图像转换组成。简单地说就是常用数据集+常见模型+常见图像增强方法

这个torchvision中主要有包组成:

  • torchvision.datasets
  • torchvision.models
  • torchvision.transforms

1 torchvision.datssets

包含贼多的数据集,包含下面的:

官方说明了:All the datasets have almost similar API. They all have two common arguments: transform and target_transform to transform the input and target respectively.

翻译过来就是:每一个数据集的API都是基本相同的。他们都有两个相同的参数:transform和target_transform(后面细讲)

我们就用最经典最简单的MNIST手写数字数据集作为例子,先看这个的API:

包含5个参数:

  • root:就是你想要保存MNIST数据集的位置,如果download是Flase的话,则会从目标位置读取数据集;
  • download:True的话就会自动从网上下载这个数据集,到root的位置;
  • train:True的话,数据集下载的是训练数据集;False的话则下载测试数据集(真方便,都不用自己划分了)
  • transform:这个是对图像进行处理的transform,比方说旋转平移缩放,输入的是PIL格式的图像(不是tensor矩阵);
  • target_transform:这个是对图像标签进行处理的函数(这个我没用过不太确定,也许是做标签平滑那种的处理?)

【下面用代码进一步理解】

import torchvision
mydataset = torchvision.datasets.MNIST(root='./',
train=True,
transform=None,
target_transform=None,
download=True)

运行结果如下,表示下载完毕(我不太确定这个下载数据集是否需要翻墙,我会把这次需要用的代码和数据集放到公众号,后台回复【torchvision】获取,下载出现问题请务必私戳我)

之后我们需要用到上一节课讲到的dataloader的内容:

from torch.utils.data import Dataset,DataLoader
myloader = DataLoader(dataset=mydataset,
batch_size=16)
for i,(data,label) in enumerate(myloader):
print(data.shape)
print(label.shape)
break

这时候会抛出一个错误:

大致看一看,就是pytorch的这个dataloader不是可以把数据集分成batch嘛,这个dataloder只能把tensor或者numpy这样的组合成batch,而现在的数据集的格式是PIL格式。这里验证了之前说到的,transform这个输入是PIL格式的图片,解决方法是:transform不能是None,我们需要将PIL转化成tensor才可以

所以我们把上面的transform稍作修改:

mydataset = torchvision.datasets.MNIST(root='./',
train=True,
transform=torchvision.transforms.ToTensor(),
target_transform=None,
![](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/071a7b749c094d30b482c29f16f8ec08~tplv-k3u1fbpfcp-zoom-1.image) download=True)

重新运行的时候可以得到结果:



结果中,16表示一个batch有16个样本,1表示这是单通道的灰度图片,28表示MNIST数据集图片是\(28\times 28\)的大小,然后每一个图片有一个label。

想要获取其他的数据集也是一样的,不过这里就用MNIST作为举例,其他的相同。

2 torchvision.models

预训练模型中torchvision提供了很多种,大体分成下面四类:

分别是分类模型,语义模型,目标检测模型和视频分类模型。这里呢因为分类模型比较常见也比较基础,就主要介绍这个好啦。

在torch1.6.0版本中(应该是比较近的版本),主要包含下面的预训练模型:

构建模型可以通过下面的代码:

import torchvision.models as models
resnet18 = models.resnet18()
alexnet = models.alexnet()
vgg16 = models.vgg16()
squeezenet = models.squeezenet1_0()
densenet = models.densenet161()
inception = models.inception_v3()
googlenet = models.googlenet()
shufflenet = models.shufflenet_v2_x1_0()
mobilenet = models.mobilenet_v2()
resnext50_32x4d = models.resnext50_32x4d()
wide_resnet50_2 = models.wide_resnet50_2()
mnasnet = models.mnasnet1_0()

这样构建的模型的权重值是随机的,只有结构是保存的。想要获取预训练的模型,则需要设置参数pretrained:

import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
squeezenet = models.squeezenet1_0(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
densenet = models.densenet161(pretrained=True)
inception = models.inception_v3(pretrained=True)
googlenet = models.googlenet(pretrained=True)
shufflenet = models.shufflenet_v2_x1_0(pretrained=True)
mobilenet = models.mobilenet_v2(pretrained=True)
resnext50_32x4d = models.resnext50_32x4d(pretrained=True)
wide_resnet50_2 = models.wide_resnet50_2(pretrained=True)
mnasnet = models.mnasnet1_0(pretrained=True)

我看官网的英文讲解,提到了一点:似乎这些模型的预训练数据集都是ImageNet的那个数据集,输入图片都是3通道的,并且要求输入图片的宽高不小于224像素,并且要求输入图片像素值的范围在0到1之间,然后做一个normalization标准化。

不知道各位在看一些案例的时候,有没有看到这个标准化:mean = [0.485, 0.456, 0.406]std = [0.229, 0.224, 0.225],这个应该是ImageNet的图片的标准化的参数。

这些预训练的模型参数不确定能不能直接下载,我也就把这些模型存起来一并放在了公众号的后台,依然是回复【torchvision】获取。

得到了.pth文件之后使用torch.load来加载即可。

# torch.save(model, 'model.pth')
model = torch.load('model.pth')

模型比较

最后呢,torchvision官方提供了一个不同模型在Imagenet 1-crop 的一个错误率的比较。可以一起来看看到底哪个模型比较好使。这里我放了一些常见的模型。。像是Wide ResNet这种变种我就不放了。

网络 Top-1 error Top-5 error
AlexNet 43.45 20.91
VGG-11 30.98 11.37
VGG-13 30.07 10.75
VGG-16 28.41 9.62
VGG-19 27.62 9.12
VGG-13 with BN 28.45 9.63
VGG-19 with BN 25.76 8.15
Resnet-18 30.24 10.92
Resnet-34 26.70 8.58
Resnet-50 23.85 7.13
Resnet-101 22.63 6.44
Resnet-152 21.69 5.94
SqueezeNet 1.1 41.81 19.38
Densenet-161 22.35 6.2

整体来看,还是Resnet残差网络效果好。不过EfficientNet效果更好,不过Torchvision中没有预训练,在之后会讲解EfficientNet的预训练模型的代码方便使用(先挖坑)。

【小白学PyTorch】5 torchvision预训练模型与数据集全览的更多相关文章

  1. 【小白学PyTorch】20 TF2的eager模式与求导

    [新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx64501661 ...

  2. 使用Huggingface在矩池云快速加载预训练模型和数据集

    作为NLP领域的著名框架,Huggingface(HF)为社区提供了众多好用的预训练模型和数据集.本文介绍了如何在矩池云使用Huggingface快速加载预训练模型和数据集. 1.环境 HF支持Pyt ...

  3. 【小白学PyTorch】7 最新版本torchvision.transforms常用API翻译与讲解

    文章来自:微信公众号[机器学习炼丹术].欢迎关注支持原创 也欢迎添加作者微信:cyx645016617. 参考目录: 目录 1 基本函数 1.1 Compose 1.2 RandomChoice 1. ...

  4. [Pytorch]Pytorch加载预训练模型(转)

    转自:https://blog.csdn.net/Vivianyzw/article/details/81061765 东风的地方 1. 直接加载预训练模型 在训练的时候可能需要中断一下,然后继续训练 ...

  5. 【小白学PyTorch】11 MobileNet详解及PyTorch实现

    文章来自微信公众号[机器学习炼丹术].我是炼丹兄,欢迎加我微信好友交流学习:cyx645016617. @ 目录 1 背景 2 深度可分离卷积 2.2 一般卷积计算量 2.2 深度可分离卷积计算量 2 ...

  6. 【小白学PyTorch】13 EfficientNet详解及PyTorch实现

    参考目录: 目录 1 EfficientNet 1.1 概述 1.2 把扩展问题用数学来描述 1.3 实验内容 1.4 compound scaling method 1.5 EfficientNet ...

  7. TorchVision 预训练模型进行推断

    torchvision.models 里包含了许多模型,用于解决不同的视觉任务:图像分类.语义分割.物体检测.实例分割.人体关键点检测和视频分类. 本文将介绍 torchvision 中模型的入门使用 ...

  8. 【小白学PyTorch】10 pytorch常见运算详解

    参考目录: 目录 1 矩阵与标量 2 哈达玛积 3 矩阵乘法 4 幂与开方 5 对数运算 6 近似值运算 7 剪裁运算 这一课主要是讲解PyTorch中的一些运算,加减乘除这些,当然还有矩阵的乘法这些 ...

  9. 【小白学PyTorch】15 TF2实现一个简单的服装分类任务

    [新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx64501661 ...

随机推荐

  1. intel:spectre&Meltdown侧信道攻击(四)—— cache mapping

    前面简单介绍了row hammer攻击的原理和方法,为了更好理解这种底层硬件类攻击,今天介绍一下cpu的cache mapping: 众所周知,cpu从内存读数据,最开始用的是虚拟地址,需要通过分页机 ...

  2. idea中运行Tomcat后控制台出现乱码(统一设置成UTF-8)

    出现问题:运行Tomcat后控制台出现乱码,输出语句乱码(idea 2019.3版本) 解决方法: 方案1:File----->Settings..----->Editor-----> ...

  3. 强大的输入框-应用快速启动uTools

    uTools uTools是一个 极简.插件化.跨平台 的现代桌面软件.通过自由选配丰富的插件,打造你得心应手的工具集合. 当你熟悉它后,能够为你节约大量时间,让你可以更加专注地改变世界. uTool ...

  4. 【av68676164(p51-p53)】虚拟内存管理(2)

    虚拟内存管理(2) 7.3.4 缺页终端 分级存储体系 cache+内存+辅存 页表扩充-带中断位的页表 页号 页框号 中断位I 辅存地址 访问位 修改位 1 1 0 0 0 1 中断位I-标志该页是 ...

  5. 初识TypeScript:查找指定路径下的文件按类型生成json

    如果开发过node.js的话应该对js(javascript)非常熟悉,TypeScript(以下简称ts)是js的超集. 下面是ts的官网: https://www.tslang.cn/ 1.环境配 ...

  6. 基于索引的QA问答对匹配流程梳理

    知识库(主要是标准的QA信息)匹配需求是对已经梳理出的大量标准QA对信息进行匹配,找出最符合用户问题的QA对进行回复,拆分主要的处理流程主要为如下两点: 标准QA信息入库索引: 通过对用户提出的问题进 ...

  7. 自动化特征工程—Featuretools

    Featuretools是一个可以自动进行特征工程的python库,主要原理是针对多个数据表以及它们之间的关系,通过转换(Transformation)和聚合(Aggregation)操作自动生成新的 ...

  8. Es6扩展运算符--三点运算符(...)--展开语法(Spread syntax)

    0.看文档呀 关于拓展运算符更详细的解释见 > MDN展开语法 关于剩余参数更详细的解释见 >MDN剩余参数 关于解构赋值更详细的解释见 >MDN解构赋值 直接看上面的文档更好 1. ...

  9. low-code 与 20 年前的 Dreamweaver 有什么区别?

    一.low-code 是什么? A low-code development platform (LCDP) is software that provides a development envir ...

  10. TypeScript是什么,为什么要使用它?

    转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 原文出处:https://medium.com/swlh/what-is-typescript-bf333e ...