比较套路的题目。

可以发现难点在于某个点的权值动态修改 且我们要维护树上一条路径上的点权>x的个数。

每个点都在动态修改 这意味着我们的只能暴力的去查每个点。

考虑将所有可以动态修改的点变成静态的 这样查询好查 那么外部需要一个动态的标记 且这个标记适用于所有点。

不难想到我们的循环标记i 即第i次操作 将这个东西变成每个点的标记 就可以刚好和题目中的动态修改吻合了。

一个点此刻被打上动态修改标记 那么其权值的变化量为-i 因为外面有一个+i的标记了 这个标记时刻也在变和题目吻合。

此时我们需要处理的只有树上某个点权值会变树上某条路径上>x的点的个数。

只能考虑主席树了(发现这个问题还不是很好解决

dfs序上建立主席树 利用对LCA的容斥即可解决问题。

由于存在单点修改 外面套一个树状数组即可。码量过大 不妨考虑离线。

考虑一个没有被修改过的点 其实不需要赋值相当于没有即可。

考虑我们询问的形式为 当前时间 x+now>c c-now-x now-c>i 也就是查询now-c之前被修改过的点。

对于一个询问 now-c来说我们考虑之后被修改过的点至少为now+1 而由于c>0 所以now-c<now+1.

所以后面的修改对前面的没有任何的影响所以可以直接 树上建立主席树来离线查询。

数据范围 是简化程序的基础。

//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 1000000000
#define ldb long double
#define pb push_back
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define pii pair<int,int>
#define F first
#define S second
#define mk make_pair
#define RE register
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define ull unsigned long long
#define P 1000000000000000ll
#define l(p) t[p].l
#define r(p) t[p].r
#define sum(p) t[p].sum
#define ls l(p),l,mid
#define rs r(p),mid+1,r
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
const int MAXN=200010;
int n,len,id,m,cnt;
int a[MAXN],root[MAXN];
int f[MAXN][20],Log[MAXN],d[MAXN];
int lin[MAXN],ver[MAXN],nex[MAXN];
struct wy{int l,r;int sum;}t[MAXN*30],w[MAXN];
inline void add(int x,int y){ver[++len]=y;nex[len]=lin[x];lin[x]=len;}
inline void insert(int &p,int l,int r,int las,int x)
{
p=++id;t[p]=t[las];
if(l==r){++sum(p);return;}
int mid=(l+r)>>1;
if(x<=mid)insert(ls,l(las),x);
else insert(rs,r(las),x);
sum(p)=sum(l(p))+sum(r(p));
}
inline void dfs(int x,int fa)
{
d[x]=d[fa]+1;
rep(1,Log[d[x]],i)f[x][i]=f[f[x][i-1]][i-1];
if(a[x])insert(root[x],1,m,root[fa],a[x]);
else root[x]=root[fa];
go(x)dfs(tn,x);
}
inline int LCA(int x,int y)
{
if(d[x]<d[y])swap(x,y);
fep(Log[d[x]],0,i)if(d[f[x][i]]>=d[y])x=f[x][i];
if(x==y)return x;
fep(Log[d[x]],0,i)if(f[x][i]!=f[y][i])x=f[x][i],y=f[y][i];
return f[x][0];
}
inline int ask(int p,int l,int r,int x)
{
if(x<=0)return 0;
if(r<=x)return sum(p);
int mid=(l+r)>>1;
if(x<=mid)return ask(ls,x);
return ask(ls,x)+ask(rs,x);
}
int main()
{
//freopen("1.in","r",stdin);
get(n);int rt;Log[0]=-1;
rep(1,n,i)
{
f[i][0]=read();
if(!f[i][0])rt=i;
else add(f[i][0],i);
Log[i]=Log[i>>1]+1;
}
get(m);
rep(1,m,i)
{
int op,l,r,x;
get(op);get(l);
if(op==1)get(r),get(x),w[++cnt]=(wy){l,r,i-x};
else a[l]=i;
}
dfs(rt,0);
rep(1,cnt,i)
{
int lca=LCA(w[i].l,w[i].r);
int L=w[i].l,R=w[i].r;
int ww=w[i].sum-1;
//cout<<-ask(root[lca],1,m,ww)*2<<endl;
//put(ask(root[L],1,m,ww));
printf("%d %d\n",d[L]+d[R]-2*d[lca]+1,ask(root[L],1,m,ww)+ask(root[R],1,m,ww)-ask(root[lca],1,m,ww)*2+(a[lca]<=ww&&a[lca]));
}
return 0;
}

bzoj 4448 [Scoi2015]情报传递 主席树的更多相关文章

  1. 4448: [Scoi2015]情报传递|主席树|离线操作

    能够把全部的操作离线,然后树链剖分将全部人搜集情报的时间增加到主席树中,查询的时候能够直接查询搜集情报时间≤i−C[i]−1的人的个数 时间复杂度n∗log22n,空间复杂度n∗log2n #incl ...

  2. BZOJ 4448: [Scoi2015]情报传递 树链剖分 主席树

    4448: [Scoi2015]情报传递 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4448 Description 奈特公司是一个巨 ...

  3. bzoj 4448 [Scoi2015]情报传递(主席树,LCA)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4448 [题意] 给定一颗树,询问一条路径上权值小于t-c的点数. [思路] 将一个2查 ...

  4. bzoj 4448 [Scoi2015]情报传递 (树链剖分+主席树)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4448 题面: Description 奈特公司是一个巨大的情报公司,它有着庞大的情报网络 ...

  5. 【BZOJ4448】[Scoi2015]情报传递 主席树+LCA

    [BZOJ4448][Scoi2015]情报传递 Description 奈特公司是一个巨大的情报公司,它有着庞大的情报网络.情报网络中共有n名情报员.每名情报员能有若干名(可能没有)下线,除1名大头 ...

  6. bzoj4448 [Scoi2015]情报传递 主席树+树上差分

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4448 题解 练习一下主席树的基础练习题找回感觉. 对于每一次询问,第一问显然随便做. 第二问的 ...

  7. bzoj 4448: [Scoi2015]情报传递

    Description 奈特公司是一个巨大的情报公司,它有着庞大的情报网络.情报网络中共有n名情报员.每名情报员口J-能有 若T名(可能没有)下线,除1名大头日外其余n-1名情报员有且仅有1名上线.奈 ...

  8. BZOJ4448[Scoi2015]情报传递——主席树+LCA

    题目描述 奈特公司是一个巨大的情报公司,它有着庞大的情报网络.情报网络中共有n名情报员.每名情报员口J-能有 若T名(可能没有)下线,除1名大头目外其余n-1名情报员有且仅有1名上线.奈特公司纪律森严 ...

  9. 【bzoj4448】[Scoi2015]情报传递 主席树

    题目描述 奈特公司是一个巨大的情报公司,它有着庞大的情报网络.情报网络中共有n名情报员.每名情报员口J-能有若T名(可能没有)下线,除1名大头日外其余n-1名情报员有且仅有1名上线.奈特公司纪律森严, ...

随机推荐

  1. 精简CSS代码,提高代码的可读性和加载速度

    前言 提高网站整体加载速度的一个重要手段就是提高代码文件的网络传输速度.之前提到过,所有的代码文件都应该是经过压缩了的,这可提高网络传输速度,提高性能.除了压缩代码之外,精简代码也是一种减小代码文件大 ...

  2. HTML5(四)Drag and Drop

    HTML5 拖放(Drag 和 Drop) 拖放 拖放是一种常见的特性,即抓取对象以后拖到另一个位置. 在 HTML5 中,拖放是标准的一部分,任何元素都能够拖放. 设置元素为可拖放 首先,为了使元素 ...

  3. 【线型DP】CF1012C Hills 小山坡

    来了来了. 题目: 给你n个数,你一次操作可以把某一个数-1(可以减为负数),你的目标是使任意的k个数严格小于它旁边的两个数(第一个数只用严格小于第二个数,第n个数只用严格小于第n-1个数),问最少需 ...

  4. Numerical Sequence (Hard vision) 题解

    The only difference between the easy and the hard versions is the maximum value of \(k\). You are gi ...

  5. 如何Simplest搭建个人博客

    前期 例如wordpress.hexo.hugo-- 准备 安装Node.js,安装Git,进入Hexo网站.进入Github网站进注册和登录. 建议买个阿里云服务器(学生最近好像是免费的) 开始搭建 ...

  6. 前端开发-css

    css: 是给html标签装饰的,变得更好看. 注释: 单行注释:/*注释内容*/ 多行注释:/* 注释内容 注释内容 注释内容 */ 通常我们在写css代码时也会用注释来划分区域(html代码多,同 ...

  7. JVM 学习笔记(四)

    回顾: 在之前的文章中,我们主要体现了当堆内存设置的比较小的情况下,比如:-Xmx20M -Xms20M,在项目运行的过程中,不断往内存中去添加对象, 这时候就会出现OOM,也就是内存溢出,本文章将展 ...

  8. java 基本语法(十七)Lambda (四)构造器引用与数组引用

    1.构造器引用格式:类名::new 2.构造器引用使用要求:和方法引用类似,函数式接口的抽象方法的形参列表和构造器的形参列表一致.抽象方法的返回值类型即为构造器所属的类的类型 3.构造器引用举例: / ...

  9. 机器学习实战基础(十七):sklearn中的数据预处理和特征工程(十)特征选择 之 Embedded嵌入法

    Embedded嵌入法 嵌入法是一种让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行.在使用嵌入法时,我们先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据权值系数从大 ...

  10. 机器学习实战基础(十三):sklearn中的数据预处理和特征工程(六)特征选择 feature_selection 简介

    当数据预处理完成后,我们就要开始进行特征工程了. 在做特征选择之前,有三件非常重要的事:跟数据提供者开会!跟数据提供者开会!跟数据提供者开会!一定要抓住给你提供数据的人,尤其是理解业务和数据含义的人, ...