题目描述

huyichen世子事件后,xuzhenyi成了皇上特聘的御前一品侍卫。

皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状;有边相连的宫殿间可以互相望见。大内保卫森严,三步一岗,五步一哨,每个宫殿都要有人全天候看守,在不同的宫殿安排看守所需的费用不同。

可是xuzhenyi手上的经费不足,无论如何也没法在每个宫殿都安置留守侍卫。

帮助xuzhenyi布置侍卫,在看守全部宫殿的前提下,使得花费的经费最少。

输入输出格式

输入格式

输入文件中数据表示一棵树,描述如下:

第1行\(n\),表示树中结点的数目。

第2行至第\(n+1\)行,每行描述每个宫殿结点信息,依次为:该宫殿结点标号\(i(0<i<=n)\),在该宫殿安置侍卫所需的经费\(k\),该边的儿子数\(m\),接下来\(m\)个数,分别是这个节点的\(m\)个儿子的标号\(r_1,r_2,...,r_m\)。

对于一个\(n(0 < n <= 1500)\)个结点的树,结点标号在\(1\)到\(n\)之间,且标号不重复。

输出格式

输出文件仅包含一个数,为所求的最少的经费。

样例

样例输入

6
1 30 3 2 3 4
2 16 2 5 6
3 5 0
4 4 0
5 11 0
6 5 0

样例输出

25

题解

当我们分析一个节点的时候,很容易想到起码有两种情况:在这个节点设侍卫或者不设。但是如果单纯地只是分析它不设,那么依据题意,它必须得被观测到,那么它的子节点到底要不要设呢?此时便又要分两种情况:被儿子观测或是被父亲观测。因此到这里我们把这个题已经抽象成了三种状态转移:

  • \(f[i][1]\)表示在\(i\)节点的子节点设一个侍卫的最小经费(默认\(i\)节点自己不设)

  • \(f[i][2]\)表示在\(i\)节点设一个侍卫的最小经费

  • \(f[i][3]\)表示在\(i\)节点的父节点设一个侍卫的最小经费(默认\(i\)节点自己不设)

  • 1、\(f[i][1]\)表示i节点被它的子节点观测到,这时我们就要考虑:是不是子节点一定会再自己那里设一个观测点呢?当然不一定了,当且仅当子节点 \(f[son[i]][2]<f[son[i]][1]\)时,他才会在自己那里设。那么我们就需要找遍i的所有儿子,只要有一个儿子可以设就行了。这个怎么实现呢?我们只需先把所有儿子的\(min(f[v][1],f[v][2])\)累加到\(f[i][1]\)上,再取所有儿子的\(f[v][2]-min(f[v][1],f[v][2])\)最小值\(t\),如果这个最小值\(t\)不是0,就说明没有一个儿子打算在自己那里设点,就必须强迫一个儿子改变最优解,来满足i节点的需求,即用\(f[i][2]\)加上\(t\),若\(t\)是0,不影响,加上也无妨。

f[i][1]+=min(f[v][1],f[v][2]);//既然默认自己不会设点,就不可能有f[v][3]这个状态
f[i][1]+=t;
  • 2、\(f [ i ] [ 2 ]\) 表示\(i\)节点自己那里设了一个侍卫,既然自己已经设了一个,那么子节点的三种情况都要考虑。
f[i][2]+=min(f[v][1],f[v][2],f[v][3]);
  • 3、\(f [ i ] [ 3 ]\) 表示\(i\)节点被它的父节点观测到,那么除了\(f [ v ] [ 3 ]\)要被排除掉,其他的只要保证子节点可以被观测到即可。
f[i][3]+=min(f[v][1],f[v][2]);

代码

下面是参考代码:

#include <cstdio>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=1500+50,
INF=0x3f3f3f3f;
vector<int> son_id[maxn];
int f[maxn][4],//树形dp : 1=>son 2=>itself 3=>father
cnt[maxn],//出现次数
son_num[maxn],//儿子数目
cost[maxn];//所需的经费
int n;
void tree_dp(int x){
int ans=INF;
for(int i=0;i<son_num[x];i++){
int son=son_id[x][i];
tree_dp(son);
f[x][1]+=min(f[son][1],f[son][2]);
ans=min(ans,f[son][2]-min(f[son][1],f[son][2]));
f[x][2]+=min(f[son][1],min(f[son][2],f[son][3]));
f[x][3]+=min(f[son][1],f[son][2]);
}
f[x][1]+=ans;
f[x][2]+=cost[x];
}
int main(){
cin>>n;
for(int i=1;i<=n;i++){
int id;
cin>>id;
cin>>cost[id]>>son_num[id];
for(int j=1;j<=son_num[id];j++){
int x;cin>>x;
cnt[x]++;
son_id[id].push_back(x);
}
}
for(int i=1;i<=n;i++)
if(cnt[i]==0){
tree_dp(i);
cout<<min(f[i][1],f[i][2]);
}
return 0;
}

树形dp 之 小胖守皇宫的更多相关文章

  1. Vijos 1144 小胖守皇宫 【树形DP】

    小胖守皇宫 描述 huyichen世子事件后,xuzhenyi成了皇上特聘的御前一品侍卫. 皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:某些宫殿间可以互相望见.大内保卫森严,三步一岗,五步 ...

  2. 【树形dp】vijos1144小胖守皇宫

    细节很精妙 描述 huyichen世子事件后,xuzhenyi成了皇上特聘的御前一品侍卫. 皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:某些宫殿间可以互相望见.大内保卫森严,三步一岗,五步 ...

  3. [vijos1144]小胖守皇宫<树形dp>

    题目链接:https://vijos.org/p/1144 woc我竟然A了,这道经典的树形dp或者说是树形dp的入门题我终于过了,虽然之前做过一些树形dp的题,但是这题开始还是一脸懵逼,dp方程如何 ...

  4. 小胖守皇宫(VIJOS P1144 )题解

    题目描述 huyichen世子事件后,xuzhenyi成了皇上特聘的御前一品侍卫. 皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:某些宫殿间可以互相望见.大内保卫森严,三步一岗,五步一哨,每 ...

  5. vijos 小胖守皇宫

    点击打开题目 树形DP 显然会想到某个点放或不放守卫来定义状态,但在不放的情况下,需要分类讨论是父亲放还是一个儿子放,于是定义以下状态: f[root][0]表示自己不放,父亲也不放 f[root][ ...

  6. Vijos1144小胖守皇宫【树形DP】

    皇宫看守 太平王世子事件后,陆小凤成了皇上特聘的御前一品侍卫.皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:某些宫殿间可以互相望见.大内保卫森严,三步一岗,五步一哨,每个宫殿都要有人全天候看 ...

  7. 【vijos1144】小胖守皇宫(树形DP)

    描述 huyichen世子事件后,xuzhenyi成了皇上特聘的御前一品侍卫. 皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:某些宫殿间可以互相望见.大内保卫森严,三步一岗,五步一哨,每个宫 ...

  8. vijos1144(小胖守皇宫)

    也是ural1039 描述 huyichen世子事件后,xuzhenyi成了皇上特聘的御前一品侍卫. 皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:某些宫殿间可以互相望见.大内保卫森严,三步 ...

  9. 树形DP 复习

    树形DP 树形DP:建立在树上的动态规划 一般有两种传递方式:根→叶或叶→根 前者出现在换根DP中,一般操作是求出某一个点的最优解,再通过这一个点推知其他点的最优解. 后者是树形DP的常见形式,一般树 ...

随机推荐

  1. vulstack红队评估(四)

    一.环境搭建: ①根据作者公开的靶机信息整理 虚拟机密码: ubuntu: ubuntu:ubuntu   win7: douser:Dotest123   Win2008 DC: administr ...

  2. 一文带你了解Redis持久化完整版本

    本文讲解知识点 持久化的简介 RDB AOF RDB与AOF的区别 持久化应用场景 对于持久化这个功能点,其实很简单没有那么复杂 演示环境 centos7.0 redis4.0 redis存放目录:/ ...

  3. HUD-Text插件使用方法

    插件的使用需要 1.HUDText PS:若存在在运行项目时出现了text(clone)而未有字体,点击该HUD的Text的Apply更新预制 由此可见,该插件时同过实例化预制的形式来实现打击浮字的 ...

  4. JavaWeb网上图书商城完整项目-数据库操作工具类2-MapHandle的高级用法

    1.现在在上面一章的基础上,我们引入一个address表,该表记录person类的地址,address表的格式如下所示 现在person类要和address表想关联,得到当前联系人的住宅地址,我们应该 ...

  5. 入门大数据---Kafka的搭建与应用

    前言 上一章介绍了Kafka是什么,这章就讲讲怎么搭建以及如何使用. 快速开始 Step 1:Download the code Download the 2.4.1 release and un-t ...

  6. 读取和写入blob类型数据

    读写oracle  blob类型 http://zyw090111.iteye.com/blog/607869 http://blog.csdn.net/jeryjeryjery/article/de ...

  7. Golden Tiger Claw(二分图)

    Golden Tiger Claw 题意 找到和最小的两个序列a,b满足对于任意i,j有a[i]+b[j]>=c[i][j](矩阵c给出). solution 裸的二分图就水过了-- #incl ...

  8. When Lambo with Howdoo

    原文链接:https://howdoo.io/when-lambo/ 为了庆祝即将推出的革命性新社交媒体平台Howdoo以及我们令人惊喜的合作伙伴关系和社区,我们正在发起一项竞赛,以最终回答“When ...

  9. 阿里云上安装启动nginx 以及在个人电脑上通过公网ip访问遇到的问题

    1.安装依赖包 //一键安装上面四个依赖 yum -y install gcc zlib zlib-devel pcre-devel openssl openssl-devel 2.下载并解压安装包 ...

  10. Error: error getting chaincode bytes: failed to calculate dependencies报错解决办法

    Error: error getting chaincode bytes: failed to calculate dependencies: incomplete package: github.c ...