CF-1354 E. Graph Coloring(二分图,背包,背包方案输出)
E. Graph Coloring
n个点m条边的无向图,不保证联通,给每个点标号1,2,3。1号点个数n1,2号点个数n2,3号点个数n3。且每条边的两点,标号之差绝对值为1。如果有合法方案,需输出方案。
考虑每个联通子图,2只可以和1或者3连边,1只能和2连边,3只能和2连边,那么将1,3归为一堆,2归为一堆。每一堆内不存在边,构成一个独立点集,那么很明显是一个二分图,每次DFS可以找到二分图两部点的个数,如果存在奇环那么直接输出NO
对于每个联通子图,一个二分图,假设左部有 x 个点,右部有y个点,那么可以给x个点标2号,或者给 y 个点标2号。问最后能否刚好凑够 n2 个2号点。这显然是一个背包问题。
每个联通子图是一个物品,二分图两部分点的数量就是体积,可以记录路径也可以不记录。因为目标是凑够 n2 个点,那么如果第 i 个物品选择的不是二分图中标记为 2 的点,那么认为这个物品是反选的,也是将标记为 1 的点最终标记成了 2。
对于1号点和3号点,在整个过程中都被标记成了1,所以只需要输出所有标记为1的点即可,如果n1个 1 全部输出,那么再紧接着输出 3即可。
需要标记的东西:第 i 个物品的两个体积(左部点个数和右部点个数), 每个点的标号,每个点所属的物品编号,物品是否要反选(最后DP结束后倒推即可)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
#define dbg(x...) do { cout << "\033[32;1m" << #x <<" -> "; err(x); } while (0)
void err() { cout << "\033[39;0m" << endl; }
template<class T, class... Ts> void err(const T& arg,const Ts&... args) { cout << arg << " "; err(args...); }
const int N = 5000 + 5;
const int M = 200010;
int head[N], ver[M], nxt[M], tot, cnt;
int n, m, n1, n2, n3;
int c[N], be[N], c1[N], c2[N], rev[N];
int d[N][N];
void add(int x, int y){
ver[++tot] = y, nxt[tot] = head[x], head[x] = tot;
}
bool dfs(int x, int col){
c[x] = col;
be[x] = cnt;
if(c[x] == 1) c1[cnt] ++;
else c2[cnt] ++;
for(int i=head[x];i;i=nxt[i]){
int y = ver[i];
if(!c[y]){
if(!dfs(y, 3 - col)) return false;
}
if(c[y] + c[x] != 3) return false;
}
return true;
}
int main(){
scanf("%d%d", &n,&m);
scanf("%d%d%d", &n1, &n2, &n3);
for(int i=1;i<=m;i++){
int x, y;scanf("%d%d", &x, &y);
add(x, y);add(y, x);
}
d[0][0] = 1;
for(int i=1;i<=n;i++){
if(c[i]) continue;
cnt++;
if(!dfs(i, 1)){
puts("NO");
return 0;
}
for(int j=c1[cnt];j<=n2;j++){
d[cnt][j] |= d[cnt-1][j-c1[cnt]];
}
for(int j=c2[cnt];j<=n2;j++){
d[cnt][j] |= d[cnt-1][j-c2[cnt]];
}
}
if(!d[cnt][n2]) {
puts("NO");return 0;
}
puts("YES");
while(cnt){
rev[cnt] = d[cnt-1][n2-c1[cnt]];
if(rev[cnt]) n2 -= c1[cnt];
else n2 -= c2[cnt];
cnt --;
}
for(int i=1;i<=n;i++){
if(rev[be[i]]) c[i] = 3 - c[i];
if(c[i] == 2) putchar('2');
else if(n1 > 0) putchar('1'), n1--;
else putchar('3');
}
return 0;
}
CF-1354 E. Graph Coloring(二分图,背包,背包方案输出)的更多相关文章
- Codeforces 664D Graph Coloring 二分图染色
题意: 一个无向图的每条边为红色或蓝色,有这样一种操作:每次选一个点,使与其相邻的所有边的颜色翻转. 求解是否可以经过一系列操作使所有的边颜色相同,并输出最少操作次数和相应的点. 分析: 每个点要么选 ...
- luogu P2066 机器分配[背包dp+方案输出]
题目背景 无 题目描述 总公司拥有高效设备M台,准备分给下属的N个分公司.各分公司若获得这些设备,可以为国家提供一定的盈利.问:如何分配这M台设备才能使国家得到的盈利最大?求出最大盈利值.其中M≤15 ...
- [多校联考2019(Round 5 T2)]蓝精灵的请求(二分图染色+背包)
[多校联考2019(Round 5)]蓝精灵的请求(二分图染色+背包) 题面 在山的那边海的那边住着 n 个蓝精灵,这 n 个蓝精灵之间有 m 对好友关系,现在蓝精灵们想要玩一个团队竞技游戏,需要分为 ...
- poj 1419 Graph Coloring
http://poj.org/problem?id=1419 题意: 一张图黑白染色,相邻点不能都染黑色,最多能染几个黑色点 最大点独立集 但是图不能同构为二分图,不能用二分图匹配来做 那就爆搜吧 还 ...
- 【POJ】1419:Graph Coloring【普通图最大点独立集】【最大团】
Graph Coloring Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5775 Accepted: 2678 ...
- POJ 1419 Graph Coloring(最大独立集/补图的最大团)
Graph Coloring Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4893 Accepted: 2271 ...
- POJ1419 Graph Coloring(最大独立集)(最大团)
Graph Coloring Time Limit: 1000MS Memor ...
- uva193 - Graph Coloring
Graph Coloring You are to write a program that tries to find an optimal coloring for a given graph. ...
- UVA Graph Coloring
主题如以下: Graph Coloring You are to write a program that tries to find an optimal coloring for agiven ...
随机推荐
- IndexedDB详解
目录 简介 IndexedDB简介 IndexedDB的使用 IndexedDB的浏览器支持 创建IndexedDB indexdb中的CURD 使用游标cursor 简介 IndexedDB是一种在 ...
- 用python+sklearn(机器学习)实现天气预报数据 模型和使用
用python+sklearn机器学习实现天气预报 模型和使用 项目地址 系列教程 0.前言 1.建立模型 a.准备 引入所需要的头文件 选择模型 选择评估方法 获取数据集 b.建立模型 c.获取模型 ...
- 记一次Goroutine与wg导致的问题
前言 今天发现了一个问题是之前一直没有注意到的,这里记一下 正文 Send Closed Chan 问题概述 代码逻辑是启动时启动多个 channel, channel1 获取数据监听数据处理后发送给 ...
- 一道有趣的golang排错题
很久没写博客了,不得不说go语言爱好者周刊是个宝贝,本来想随便看看打发时间的,没想到一下子给了我久违的灵感. go语言爱好者周刊78期出了一道非常有意思的题目. 我们来看看题目.先给出如下的代码: p ...
- 【ORA】ora-39700解决
- ctfhub技能树—文件上传—MIME绕过
什么是MIME MIME(Multipurpose Internet Mail Extensions)多用途互联网邮件扩展类型.是设定某种扩展名的文件用一种应用程序来打开的方式类型,当该扩展名文件被访 ...
- SAP ERP中权限参数和角色相关表
SAP版本:S/4 HANA 1809
- Ribbon负载均衡服务调用
1.在听周阳老师讲解时,使用Ribbon核心组件IRule时是这样用的: ribbon版本 : 自定义配置类不能放在@ComponentScan所扫描的当前包下以及子包下,项目结构如下 MySelfR ...
- 深度学习DeepLearning技术实战(12月18日---21日)
12月线上课程报名中 深度学习DeepLearning(Python)实战培训班 时间地点: 2020 年 12 月 18 日-2020 年 12 月 21日 (第一天报到 授课三天:提前环境部署 电 ...
- 配置Charles 设置手机代理并允许https请求
前言: 在h5开发调试时,为实现手机app访问localhost地址,可以使用ip地址的方式,但一般公司app出于安全考虑,会限制只能访问其自有域名.因此,使用charles代理的方式 步骤 用手机代 ...