Codeforces Round #496 (Div. 3) E1. Median on Segments (Permutations Edition) (中位数,思维)
题意:给你一个数组,求有多少子数组的中位数等于\(m\).(若元素个数为偶数,取中间靠左的为中位数).
题解:由中位数的定义我们知道:若数组中\(<m\)的数有\(x\)个,\(>m\)的数有\(y\)个,只有\(x=y\)或\(y-x\)=1时,中位数才能取到\(m\),记\(m\)在原数组的位置为\(pos\).
于是,我们先遍历\([pos,n]\),记录区间\([pos,i]\)中大于\(m\)的数和小于\(m\)的数个数差,用桶记录差值的个数.
然后我们反着遍历\([1,pos]\),在段区间中,比\(m\)小的数可以和右边比\(m\)大的数抵消,比\(m\)大的数可以和右边比\(m\)小的数抵消,所以我们记录这些个数,然后每次更新一下答案即可(要考虑元素个数为偶数的情况且这题爆\(long\ long\)).
其实可能有点难理解,我个人认为可以这么想,假如我们不看左边的部分,那么对于右边的部分,只有当差值为\(0\)或\(1\)的情况才满足条件,而差值是\(0\)和\(1\)的所有情况当我第一次遍历左边的时候(\(m\)本身)就全部加到答案中了,然后再不断向左遍历,和右边相抵消.(比如说,我左边有\(3\)个连续比\(m\)小的数,那么此时\(cnt=3\),而对于右边而言,假如右边的差值为\(3\),也就是说相对比\(m\)大的数有\(3\)个,而此时我左边有\(3\)个比\(m\)小的数,那么他们就抵消了,这种情况自然也就成立,显然,当右边为\(4\)的时候,左边为\(3\)也是成立的).
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <stack>
#include <queue>
#include <vector>
#include <map>
#include <set>
#include <unordered_set>
#include <unordered_map>
#define ll long long
#define fi first
#define se second
#define pb push_back
#define me memset
const int N = 1e6 + 10;
const int mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
using namespace std;
typedef pair<int,int> PII;
typedef pair<ll,ll> PLL; int n,m;
ll a[N];
int pos,cnt;
map<int,ll> mp;
int main() {
ios::sync_with_stdio(false);cin.tie(0);
cin>>n>>m;
for(int i=1;i<=n;++i){
cin>>a[i];
if(a[i]==m) pos=i;
}
for(int i=pos;i<=n;++i){
if(a[i]>m) cnt++;
else if(a[i]<m) cnt--;
mp[cnt]++;
}
cnt=0;
ll res=0;
for(int i=pos;i>=1;--i){
if(a[i]<m) cnt++;
else if(a[i]>m) cnt--;
res+=mp[cnt]+mp[cnt+1];
}
printf("%lld\n",res); return 0;
}
Codeforces Round #496 (Div. 3) E1. Median on Segments (Permutations Edition) (中位数,思维)的更多相关文章
- Codeforces Round #496 (Div. 3 ) E1. Median on Segments (Permutations Edition)(中位数计数)
E1. Median on Segments (Permutations Edition) time limit per test 3 seconds memory limit per test 25 ...
- Codeforces Round #496 (Div. 3) E2 - Median on Segments (General Case Edition)
E2 - Median on Segments (General Case Edition) 题目大意:给你一个数组,求以m为中位数的区间个数. 思路:很巧秒的转换,我们把<= m 数记为1, ...
- CodeForces -Codeforces Round #496 (Div. 3) E2. Median on Segments (General Case Edition)
参考:http://www.cnblogs.com/widsom/p/9290269.html 传送门:http://codeforces.com/contest/1005/problem/E2 题意 ...
- Codeforces #496 E1. Median on Segments (Permutations Edition)
http://codeforces.com/contest/1005/problem/E1 题目 https://blog.csdn.net/haipai1998/article/details/80 ...
- Codeforces Round #523 (Div. 2) F. Katya and Segments Sets (交互题+思维)
https://codeforces.com/contest/1061/problem/F 题意 假设存在一颗完全k叉树(n<=1e5),允许你进行最多(n*60)次询问,然后输出这棵树的根,每 ...
- 1005E1 Median on Segments (Permutations Edition) 【思维+无序数组求中位数】
题目:戳这里 百度之星初赛原题:戳这里 题意:n个不同的数,求中位数为m的区间有多少个. 解题思路: 此题的中位数就是个数为奇数的数组中,小于m的数和大于m的数一样多,个数为偶数的数组中,小于m的数比 ...
- Codeforces Round #496 (Div. 3) ABCDE1
//B. Delete from the Left #include <iostream> #include <cstdio> #include <cstring> ...
- CF1005E1 Median on Segments (Permutations Edition) 思维
Median on Segments (Permutations Edition) time limit per test 3 seconds memory limit per test 256 me ...
- Codeforces Round #539 (Div. 2) - D. Sasha and One More Name(思维)
Problem Codeforces Round #539 (Div. 2) - D. Sasha and One More Name Time Limit: 1000 mSec Problem ...
随机推荐
- python基础语法1-变量
l Python基础语法1-变量
- ubuntu 上搭建 go的开发环境 vscode
原文链接: https://astaxie.gitbooks.io/build-web-application-with-golang/zh/01.4.html 原本我是在windows下进行go的环 ...
- maven生命周期与插件
目录 Maven生命周期 clean default site 命令与对应周期 插件与绑定 插件目标 插件绑定 内置绑定 自定义绑定 插件配置 本文主要是针对<maven实战>书中关键知识 ...
- Linux Clone函数
Linux Clone函数 之前某一次有过一次面试,问了内核中是怎么创建命名空间的? 下面就来扒一扒clone的精髓,以及如何通过它创建命名空间. 目录 Linux Clone函数 使用clone创建 ...
- xtrabackup 备份与恢复
书上摘抄 ---深入浅出mysql 448页 grant reload on *.* to 'backup'@'localhost' identified by '123456'; grant re ...
- linux中进制转换
方式一:使用$[]或$(()) 格式为:$[base#number]或$((base#number)),其中base为进制,number为对应进制数. 这种方式输入2进制.16进制等,但只能输出为10 ...
- 【开源】我和 JAP(JA Plus) 的故事
JA Plus 故事 程序员的故事如此简单之绕不过去的开源情结 我们准备做一件伟大的事,也可以说是一件真真正正普惠的事. 絮 是的,你没有看错,就是"絮"而非"序&quo ...
- 详解MySQL执行事务的语法和流程
摘要:MySQL 提供了多种存储引擎来支持事务. MySQL 提供了多种存储引擎来支持事务.支持事务的存储引擎有 InnoDB 和 BDB,其中,InnoDB 存储引擎事务主要通过 UNDO 日志和 ...
- oralce move和shrink释放高水位
转自:https://blog.51cto.com/fengfeng688/1955137 move和shrink的共同点: 收缩段,消除部分行迁移,消除空间碎片,使数据更紧密 shrink用法: 语 ...
- Spider爬虫基础
get获取某个网站的html代码,post访问网站获取网站返回的信息 import urllib.request import urllib.parse #使用get请求 def start1(): ...