Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 383    Accepted Submission(s): 167


Problem Description
Sequence is beautiful and the beauty of an integer sequence is defined as follows: removes all but the first element from every consecutive group of equivalent elements of the sequence (i.e. unique function in C++ STL) and the summation of rest integers is
the beauty of the sequence.

Now you are given a sequence A of n integers {a1,a2,...,an}.
You need find the summation of the beauty of all the sub-sequence of A.
As the answer may be very large, print it modulo 109+7.

Note: In mathematics, a sub-sequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements. For example {1,3,2} is
a sub-sequence of {1,4,3,5,2,1}.
 

Input
There are multiple test cases. The first line of input contains an integer T,
indicating the number of test cases. For each test case:

The first line contains an integer n (1≤n≤105),
indicating the size of the sequence. The following line contains n integers a1,a2,...,an,
denoting the sequence(1≤ai≤109).

The sum of values n for
all the test cases does not exceed 2000000.
 

Output
For each test case, print the answer modulo 109+7 in
a single line.
 

Sample Input

3
5
1 2 3 4 5
4
1 2 1 3
5
3 3 2 1 2
 

Sample Output

240
54

144

这题看了好长时间题解,终于理解了。因为子序列太多,所以可以考虑每一个元素贡献的价值,对于每个数, 我们只算它出现在连续相同元素的第一个时的贡献, 这样会使计算简便很多. 假设当前的数是a[i], 那么i后面的数可以随便选有2^(n-i)种. 考虑a[i]前面的数, 要么一个不选, 要么选择的最后一个数和a[i]不同, 那么我们只要把前面出现过的i的位置记录下来,分别为b,c,d,..那么总的个数为2^(i-1)-2^(b-1)-2^(c-1)-...这样就可以算出来了。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define ll long long
#define inf 0x7fffffff
#define maxn 100070
#define MOD 1000000007
map<int,int>mp;
map<int,int>::iterator it;
ll a[maxn],cishu[maxn];
ll kuaisumi(ll a,ll b,int c)
{
ll ans = 1;
a=a%c;
while(b>0)
{
if(b%2==1)
ans=(ans*a)%c;
b=b/2;
a=(a*a)%c;
}
return ans;
}
ll mul(ll x){
return kuaisumi(2,x,MOD);
} int main()
{
ll m,i,j,T;
ll n;
scanf("%lld",&T);
while(T--)
{
scanf("%lld",&n);
for(i=1;i<=n;i++){
scanf("%lld",&a[i]);
}
memset(cishu,0,sizeof(cishu));
mp.clear();
ll ans=0;
for(i=1;i<=n;i++){
if(!mp.count(a[i])){
ans=(ans+a[i]*mul(n-1))%MOD;
}
else{
ans=(ans+ a[i]*( mul(i-1)-mp[a[i] ])%MOD*mul(n-i)%MOD )%MOD;
}
mp[a[i] ]=(mp[a[i] ]+mul(i-1) )%MOD; }
printf("%lld\n",(ans+MOD)%MOD); }
return 0;
}

hdu5496 Beauty of Sequence的更多相关文章

  1. hdu-5496 Beauty of Sequence(递推)

    题目链接: Beauty of Sequence Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java ...

  2. HDU 5496 Beauty of Sequence

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5496 Beauty of Sequence Problem Description Sequence ...

  3. HDU 5496——Beauty of Sequence——————【考虑局部】

    Beauty of Sequence Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  4. Hdu 5496 Beauty of Sequence (组合数)

    题目链接: Hdu 5496 Beauty of Sequence 题目描述: 一个整数序列,除去连续的相同数字(保留一个)后,序列的和成为完美序列和.问:一个整数序列的所有子序列的完美序列和? 解题 ...

  5. HDU 5496 - BestCoder Round #58 - Beauty of Sequence

      题目链接 : http://bestcoder.hdu.edu.cn/contests/contest_chineseproblem.php?cid=637&pid=1002 思路 : 考 ...

  6. CF&&CC百套计划3 Codeforces Round #204 (Div. 1) D. Jeff and Removing Periods

    http://codeforces.com/problemset/problem/351/D 题意: n个数的一个序列,m个操作 给出操作区间[l,r], 首先可以删除下标为等差数列且数值相等的一些数 ...

  7. HDU6592 Beauty Of Unimodal Sequence

    Beauty Of Unimodal Sequence 给一个序列,在满足单调递增或者单调递减或者先增后减的最长子序列集合里找到下标字典序最大以及最小的两个子序列,输出这两个子序列里元素的下标. n≤ ...

  8. 2019年杭电多校第二场 1002题Beauty Of Unimodal Sequence(LIS+单调栈)

    题目链接 传送门 思路 首先我们对\(a\)正反各跑一边\(LIS\),记录每个位置在前一半的\(LIS\)中应该放的位置\(ans1[i]\),后一半的位置\(ans2[i]\). 对于字典序最小的 ...

  9. codeforces 336C Vasily the Bear and Sequence(贪心)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Vasily the Bear and Sequence Vasily the b ...

随机推荐

  1. 剑指offer 面试题2:实现Singleton模式

    转自:https://blog.csdn.net/liang19890820/article/details/61615495 Singleton 的头文件(懒汉式/饿汉式公用): // single ...

  2. Java多线程-锁的区别与使用

    目录 锁类型 可中断锁 公平锁/非公平锁 可重入锁 独享锁/共享锁 互斥锁/读写锁 乐观锁/悲观锁 分段锁 偏向锁/轻量级锁/重量级锁 自旋锁 Synchronized与Static Synchron ...

  3. Linux学习笔记 | 常见错误之账户密码正确但是登录不进去系统

    前言: 笔者今日由于Linux版本的原因,需要Linux内核版本不能太高的系统,而日常使用的ubuntu系统不能满足需求,于是新建了一个虚拟机,选用的系统是Ubuntu16的,配置了一下午的各种依赖环 ...

  4. Pycharm同时执行多个脚本文件

    Pycharm同时执行多个脚本文件 设置Pycharm使它可以同时执行多个程序 打开Pycharm 找到Run,点击确认 点击Edit Configurations 右上角Allow parallel ...

  5. 【易筋经】Llinux服务器初始化及常用命令大全

    Llinux服务器初始化及常用命令大全 1.关闭防火墙以及内核安全机制 systemctl stop firewalld systemctl disable firewalld ##永久性关闭 set ...

  6. Netty学习:ChannelHandler执行顺序详解,附源码分析

    近日学习Netty,在看书和实践的时候对于书上只言片语的那些话不是十分懂,导致尝试写例子的时候遭遇各种不顺,比如decoder和encoder还有HttpObjectAggregator的添加顺序,研 ...

  7. DOCKER 安装步骤-最靠谱的笔记

    一.系统环境规划 服务器名 项目名称 docker 操作系统 CentOS Linux release 7.1.1503 (Core) Docker 版本 17.03.2-ce   二.Docker ...

  8. 2021 Duilib最新入门教程(一)Duilib简介

    目录 Duilib解决什么问题? 方案一.自己画界面 方案二.使用标准控件 方案三.使用Duilib框架 Duilib是什么? 先看下Duilib官方简介 再看下DirectUI 百度百科   比起介 ...

  9. Vue使用Ref跨层级获取组件实例

    目录 Vue使用Ref跨层级获取组件实例 示例介绍 文档目录结构 安装vue-ref 根组件自定义方法[使用provide和inject] 分别说明各个页面 结果 Vue使用Ref跨层级获取组件实例 ...

  10. NFS存储迁移至GlusterFS

    NFS存储迁移至GlusterFS 前提条件 为防止脑裂,建议使用最低3台节点制作3复制集的存储卷: 在进行存储迁移前,GluseterFS存储节点需先成为k8s集群中的node节点: 存储切换时请勿 ...