2020-3-25 update: 原洛谷日报#2中代码部分出现一些问题,详情见此帖。并略微修改本文一些描述,使得语言更加自然。

2020-4-9 update:修了一些代码的锅,并且将文章同步发表于我的个人博客

同步发表于

洛谷博客

题目传送门

BST就是二叉搜索树,这里讲的是最普通的BST。


BST(Binary Search Tree),二叉搜索树,又叫二叉排序树

是一棵空树或具有以下几种性质的树:

  1. 若左子树不空,则左子树上所有结点的值均小于它的根结点的值

  2. 若右子树不空,则右子树上所有结点的值均大于它的根结点的值

  3. 左、右子树也分别为二叉排序树

  4. 没有权值相等的结点。

看到第4条,我们会有一个疑问,在数据中遇到多个相等的数该怎么办呢,显然我们可以多加一个计数器,就是当前这个值出现了几遍。

那么我们的每一个节点都包含以下几个信息:

  1. 当前节点的权值,也就是序列里的数

  2. 左孩子的下标和右孩子的下标,如果没有则为0

  3. 计数器,代表当前的值出现了几遍

  4. 子树大小和自己的大小的和

至于为什么要有4.我们放到后面讲。

节点是这样的:

struct node{
int val,ls,rs,cnt,siz;
}tree[];

  

其中val是权值,ls/rs是左/右 孩子的下标,cnt是当前的权值出现了几次,siz是子树大小和自己的大小的和


插入:

x是当前节点的下标,v是要插入的值

void add(int x,int v)
{
tree[x].siz++;
//如果查到这个节点,说明这个节点的子树里面肯定是有v的,所以siz++
if(tree[x].val==v){
//如果恰好有重复的数,就把cnt++,退出即可,因为我们要满足第四条性质
tree[x].cnt++;
return ;
}
if(tree[x].val>v){//如果v<tree[x].val,说明v实在x的左子树里
if(tree[x].ls!=)
add(tree[x].ls,v);//如果x有左子树,就去x的左子树
else{//如果不是,v就是x的左子树的权值
cont++;//cont是目前BST一共有几个节点
tree[cont].val=v;
tree[cont].siz=tree[cont].cnt=;
tree[x].ls=cont;
}
}
else{//右子树同理
if(tree[x].rs!=)
add(tree[x].rs,v);
else{
cont++;
tree[cont].val=v;
tree[cont].siz=tree[cont].cnt=;
tree[x].rs=cont;
}
}
}

  


找前驱:

x是当前的节点的下标,val是要找前驱的值,ans是目前找到的比val小的数的最大值

  

int queryfr(int x, int val, int ans) {
if (tree[x].val>=val)
{//如果当前值大于val,就说明查的数大了,所以要往左子树找
if (tree[x].ls==)//如果没有左子树就直接返回找到的ans
return ans;
else//如果不是的话,去查左子树
return queryfr(tree[x].ls,val,ans);
}
else
{//如果当前值小于val,就说明我们找比val小的了
if (tree[x].rs==)//如果没有右孩子,就返回tree[x].val,因为走到这一步时,我们后找到的一定比先找到的大(参考第二条性质)
return (tree[x].val<val) ? tree[x].val : ans
//如果有右孩子,,我们还要找这个节点的右子树,因为万一右子树有比当前节点还大并且小于要找的val的话,ans需要更新
if (tree[x].cnt!=)//如果当前节数的个数不为0,ans就可以更新为tree[x].val
return queryfr(tree[x].rs,val,tree[x].val);
else//反之ans不需要更新
return queryfr(tree[x].rs,val,ans);
}
}

找后继

与找前驱同理,只不过反过来了,在这里我就不多赘述了

int queryne(int x, int val, int ans) {
if (tree[x].val<=val)
{
if (tree[x].rs==)
return ans;
else
return queryne(tree[x].rs,val,ans);
}
else
{
if (tree[x].ls==)
return (tree[x].val>val)? tree[x].val : ans;
if (tree[x].cnt!=)
return queryne(tree[x].ls,val,tree[x].val);
else
return queryne(tree[x].ls,val,ans);
}
}

按值找排名:

这里我们就要用到siz了,排名就是比这个值要小的数的个数再+1,所以我们按值找排名,就可以看做找比这个值小的数的个数,最后加上1即可。

int queryval(int x,int val)
{
if(x==) return ;//没有排名
if(val==tree[x].val) return tree[tree[x].ls].siz+;
//如果当前节点值=val,则我们加上现在比val小的数的个数,也就是它左子树的大小
if(val<tree[x].val) return queryval(tree[x].ls,val);
//如果当前节点值比val大了,我们就去它的左子树找val,因为左子树的节点值一定是小的
return queryval(tree[x].rs,val)+tree[tree[x].ls].siz+tree[x].cnt;
//如果当前节点值比val小了,我们就去它的右子树找val,同时加上左子树的大小和这个节点的值出现次数
//因为这个节点的值小于val,这个节点的左子树的各个节点的值一定也小于val
}

  


按排名找值:

因为性质1和性质2,我们发现排名为n的数在BST上是第n靠左的数。或者说排名为n的数的节点在BST中,它的左子树的siz与它的各个祖先的左子树的siz相加恰好=n (这里相加是要减去重复部分)。

所以问题又转化成上一段 或者说 的后面的部分

rk是要找的排名

int queryrk(int x,int rk)
{
if(x==) return INF;
if(tree[tree[x].ls].siz>=rk)//如果左子树大小>=rk了,就说明答案在左子树里
return queryrk(tree[x].ls,rk);//查左子树
if(tree[tree[x].ls].siz+tree[x].cnt>=rk)//如果左子树大小加上当前的数的多少恰好>=k,说明我们找到答案了
return tree[x].val;//直接返回权值
return queryrk(tree[x].rs,rk-tree[tree[x].ls].siz-tree[x].cnt);
//否则就查右子树,同时减去当前节点的次数与左子树的大小
}

  


同时还要注意一点,此题的排名是要再+1的,样例的正确输出应该是3 3 1 5


然后是完整版代码

Code:

#include<iostream>
#include<cstdio>
using namespace std;
const int INF=0x7fffffff;
int cont;
struct node{
int val,ls,rs,cnt,siz;
}tree[];
int n,opt,xx;
void add(int x,int v)
{
tree[x].siz++;
if(tree[x].val==v){
tree[x].cnt++;
return ;
}
if(tree[x].val>v){
if(tree[x].ls!=)
add(tree[x].ls,v);
else{
cont++;
tree[cont].val=v;
tree[cont].siz=tree[cont].cnt=;
tree[x].ls=cont;
}
}
else{
if(tree[x].rs!=)
add(tree[x].rs,v);
else{
cont++;
tree[cont].val=v;
tree[cont].siz=tree[cont].cnt=;
tree[x].rs=cont;
}
}
}
int queryfr(int x, int val, int ans) {
if (tree[x].val>=val)
{
if (tree[x].ls==)
return ans;
else
return queryfr(tree[x].ls,val,ans);
}
else
{
if (tree[x].rs==)
return (tree[x].val<val) ? tree[x].val : ans;
if (tree[x].cnt!=)
return queryfr(tree[x].rs,val,tree[x].val);
else
return queryfr(tree[x].rs,val,ans);
}
}
int queryne(int x, int val, int ans) {
if (tree[x].val<=val)
{
if (tree[x].rs==)
return ans;
else
return queryne(tree[x].rs,val,ans);
}
else
{
if (tree[x].ls==)
return (tree[x].val>val)? tree[x].val : ans;
if (tree[x].cnt!=)
return queryne(tree[x].ls,val,tree[x].val);
else
return queryne(tree[x].ls,val,ans);
}
}
int queryrk(int x,int rk)
{
if(x==) return INF;
if(tree[tree[x].ls].siz>=rk)
return queryrk(tree[x].ls,rk);
if(tree[tree[x].ls].siz+tree[x].cnt>=rk)
return tree[x].val;
return queryrk(tree[x].rs,rk-tree[tree[x].ls].siz-tree[x].cnt);
}
int queryval(int x,int val)
{
if(x==) return ;
if(val==tree[x].val) return tree[tree[x].ls].siz+;
if(val<tree[x].val) return queryval(tree[x].ls,val);
return queryval(tree[x].rs,val)+tree[tree[x].ls].siz+tree[x].cnt;
}
inline int read()
{
int r=,w=;
char ch=getchar();
while(ch<''||ch>''){
if(ch=='-') w=-;
ch=getchar();
}
while(ch>=''&&ch<=''){
r=(r<<)+(r<<)+(ch^);
ch=getchar();
}
return r*w;
}
int main()
{
n=read();
while(n--){
opt=read();xx=read();
if(opt==) printf("%d\n",queryval(,xx)+);
else if(opt==) printf("%d\n",queryrk(,xx));
else if(opt==) printf("%d\n",queryfr(,xx,-INF));
else if(opt==) printf("%d\n",queryne(,xx,INF));
else{
if(cont==){
cont++;
tree[cont].cnt=tree[cont].siz=;
tree[cont].val=xx;
}
else add(,xx);
}
}
return ;
}

浅析BST二叉搜索树的更多相关文章

  1. 数据结构中很常见的各种树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)

    数据结构中常见的树(BST二叉搜索树.AVL平衡二叉树.RBT红黑树.B-树.B+树.B*树) 二叉排序树.平衡树.红黑树 红黑树----第四篇:一步一图一代码,一定要让你真正彻底明白红黑树 --- ...

  2. [LeetCode] Serialize and Deserialize BST 二叉搜索树的序列化和去序列化

    Serialization is the process of converting a data structure or object into a sequence of bits so tha ...

  3. bst 二叉搜索树简单实现

    //数组实现二叉树: // 1.下标为零的元素为根节点,没有父节点 // 2.节点i的左儿子是2*i+1:右儿子2*i+2:父节点(i-1)/2: // 3.下标i为奇数则该节点有有兄弟,否则又左兄弟 ...

  4. 数据结构中常见的树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)

    树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: BST树 ...

  5. [LeetCode] Minimum Absolute Difference in BST 二叉搜索树的最小绝对差

    Given a binary search tree with non-negative values, find the minimum absolute difference between va ...

  6. 530 Minimum Absolute Difference in BST 二叉搜索树的最小绝对差

    给定一个所有节点为非负值的二叉搜索树,求树中任意两节点的差的绝对值的最小值.示例 :输入:   1    \     3    /   2输出:1解释:最小绝对差为1,其中 2 和 1 的差的绝对值为 ...

  7. LeetCode #938. Range Sum of BST 二叉搜索树的范围和

    https://leetcode-cn.com/problems/range-sum-of-bst/ 二叉树中序遍历 二叉搜索树性质:一个节点大于所有其左子树的节点,小于其所有右子树的节点 /** * ...

  8. Leetcode938. Range Sum of BST二叉搜索树的范围和

    给定二叉搜索树的根结点 root,返回 L 和 R(含)之间的所有结点的值的和. 二叉搜索树保证具有唯一的值. 示例 1: 输入:root = [10,5,15,3,7,null,18], L = 7 ...

  9. 标准BST二叉搜索树写法

    本人最近被各种数据结构的实验折磨的不要不要的,特别是代码部分,对数据结构有严格的要求,比如写个BST要分成两个类,一个节点类,要给树类,关键是所以操作都要用函数完成,也就是在树类中不能直接操作节点,需 ...

随机推荐

  1. sql语句-如何在SQL以一个表中的数据为条件据查询另一个表中的数据

    select *from 表2where 姓名 in (select 姓名from 表1where 条件) 这个就是用一个表的查询结果当作条件去查询另一个表的数据

  2. When Lambo with Howdoo

    原文链接:https://howdoo.io/when-lambo/ 为了庆祝即将推出的革命性新社交媒体平台Howdoo以及我们令人惊喜的合作伙伴关系和社区,我们正在发起一项竞赛,以最终回答“When ...

  3. C++输出三角图形

    输出像这样的三角图形 3            1           1 1          1    1         1 1 1 1        1          1       1 ...

  4. Pandas基础知识图谱

    所有内容整理自<利用Python进行数据分析>,使用MindMaster Pro 7.3制作,emmx格式,源文件已经上传Github,需要的同学转左上角自行下载或者右击保存图片.该图谱只 ...

  5. JVM中栈的frames详解

    目录 简介 JVM中的栈 Frame Local Variables本地变量 Operand Stacks Dynamic Linking动态链接 方法执行完毕 简介 我们知道JVM运行时数据区域专门 ...

  6. 实现 (5).add(3).minus(2) 功能

    Number.prototype.add = function (number) { if (typeof number !== 'number') { throw new Error('请输入数字- ...

  7. scrapy 基础组件专题(五):自定义扩展

    通过scrapy提供的扩展功能, 我们可以编写一些自定义的功能, 插入到scrapy的机制中 一.编写一个简单的扩展 我们现在编写一个扩展, 统计一共获取到的item的条数我们可以新建一个extens ...

  8. cnn卷积理解

    首先输入图像是28*28处理好的图. 第一层卷积:用5*5的卷积核进行卷积,输入为1通道,输出为32通道.即第一层的输入为:28*28图,第一层有32个不同的滤波器,对同一张图进行卷积,然后输出为32 ...

  9. 句柄Handle的释放(8)

    本篇首先介绍几个与句柄分配与释放密切相关的类,然后重点介绍句柄的释放. 1.HandleArea.Area与Chunk 句柄都是在HandleArea中分配并存储的,类的定义如下: // Thread ...

  10. 十分钟快速搭建Python+Selenium自动化测试环境(含视频教程)

    文章首发于微信公众号:爱码小哥 准备安装包: 一:安装python:   双击python-3.7.6.exe执行文件 2.点击下一步正在安装: 3.如图所示表示安装完成: 校验环境是否安装成功:   ...