浅析BST二叉搜索树
2020-3-25 update: 原洛谷日报#2中代码部分出现一些问题,详情见此帖。并略微修改本文一些描述,使得语言更加自然。
2020-4-9 update:修了一些代码的锅,并且将文章同步发表于我的个人博客
同步发表于
BST就是二叉搜索树,这里讲的是最普通的BST。
BST(Binary Search Tree),二叉搜索树,又叫二叉排序树
是一棵空树或具有以下几种性质的树:
若左子树不空,则左子树上所有结点的值均小于它的根结点的值
若右子树不空,则右子树上所有结点的值均大于它的根结点的值
左、右子树也分别为二叉排序树
没有权值相等的结点。
看到第4条,我们会有一个疑问,在数据中遇到多个相等的数该怎么办呢,显然我们可以多加一个计数器,就是当前这个值出现了几遍。
那么我们的每一个节点都包含以下几个信息:
当前节点的权值,也就是序列里的数
左孩子的下标和右孩子的下标,如果没有则为0
计数器,代表当前的值出现了几遍
子树大小和自己的大小的和
至于为什么要有4.我们放到后面讲。
节点是这样的:
struct node{
int val,ls,rs,cnt,siz;
}tree[];
其中val是权值,ls/rs是左/右 孩子的下标,cnt是当前的权值出现了几次,siz是子树大小和自己的大小的和
插入:
x是当前节点的下标,v是要插入的值
void add(int x,int v)
{
tree[x].siz++;
//如果查到这个节点,说明这个节点的子树里面肯定是有v的,所以siz++
if(tree[x].val==v){
//如果恰好有重复的数,就把cnt++,退出即可,因为我们要满足第四条性质
tree[x].cnt++;
return ;
}
if(tree[x].val>v){//如果v<tree[x].val,说明v实在x的左子树里
if(tree[x].ls!=)
add(tree[x].ls,v);//如果x有左子树,就去x的左子树
else{//如果不是,v就是x的左子树的权值
cont++;//cont是目前BST一共有几个节点
tree[cont].val=v;
tree[cont].siz=tree[cont].cnt=;
tree[x].ls=cont;
}
}
else{//右子树同理
if(tree[x].rs!=)
add(tree[x].rs,v);
else{
cont++;
tree[cont].val=v;
tree[cont].siz=tree[cont].cnt=;
tree[x].rs=cont;
}
}
}
找前驱:
x是当前的节点的下标,val是要找前驱的值,ans是目前找到的比val小的数的最大值
int queryfr(int x, int val, int ans) {
if (tree[x].val>=val)
{//如果当前值大于val,就说明查的数大了,所以要往左子树找
if (tree[x].ls==)//如果没有左子树就直接返回找到的ans
return ans;
else//如果不是的话,去查左子树
return queryfr(tree[x].ls,val,ans);
}
else
{//如果当前值小于val,就说明我们找比val小的了
if (tree[x].rs==)//如果没有右孩子,就返回tree[x].val,因为走到这一步时,我们后找到的一定比先找到的大(参考第二条性质)
return (tree[x].val<val) ? tree[x].val : ans
//如果有右孩子,,我们还要找这个节点的右子树,因为万一右子树有比当前节点还大并且小于要找的val的话,ans需要更新
if (tree[x].cnt!=)//如果当前节数的个数不为0,ans就可以更新为tree[x].val
return queryfr(tree[x].rs,val,tree[x].val);
else//反之ans不需要更新
return queryfr(tree[x].rs,val,ans);
}
}
找后继
与找前驱同理,只不过反过来了,在这里我就不多赘述了
int queryne(int x, int val, int ans) {
if (tree[x].val<=val)
{
if (tree[x].rs==)
return ans;
else
return queryne(tree[x].rs,val,ans);
}
else
{
if (tree[x].ls==)
return (tree[x].val>val)? tree[x].val : ans;
if (tree[x].cnt!=)
return queryne(tree[x].ls,val,tree[x].val);
else
return queryne(tree[x].ls,val,ans);
}
}
按值找排名:
这里我们就要用到siz了,排名就是比这个值要小的数的个数再+1,所以我们按值找排名,就可以看做找比这个值小的数的个数,最后加上1即可。
int queryval(int x,int val)
{
if(x==) return ;//没有排名
if(val==tree[x].val) return tree[tree[x].ls].siz+;
//如果当前节点值=val,则我们加上现在比val小的数的个数,也就是它左子树的大小
if(val<tree[x].val) return queryval(tree[x].ls,val);
//如果当前节点值比val大了,我们就去它的左子树找val,因为左子树的节点值一定是小的
return queryval(tree[x].rs,val)+tree[tree[x].ls].siz+tree[x].cnt;
//如果当前节点值比val小了,我们就去它的右子树找val,同时加上左子树的大小和这个节点的值出现次数
//因为这个节点的值小于val,这个节点的左子树的各个节点的值一定也小于val
}
按排名找值:
因为性质1和性质2,我们发现排名为n的数在BST上是第n靠左的数。或者说排名为n的数的节点在BST中,它的左子树的siz与它的各个祖先的左子树的siz相加恰好=n (这里相加是要减去重复部分)。
所以问题又转化成上一段 或者说 的后面的部分
rk是要找的排名
int queryrk(int x,int rk)
{
if(x==) return INF;
if(tree[tree[x].ls].siz>=rk)//如果左子树大小>=rk了,就说明答案在左子树里
return queryrk(tree[x].ls,rk);//查左子树
if(tree[tree[x].ls].siz+tree[x].cnt>=rk)//如果左子树大小加上当前的数的多少恰好>=k,说明我们找到答案了
return tree[x].val;//直接返回权值
return queryrk(tree[x].rs,rk-tree[tree[x].ls].siz-tree[x].cnt);
//否则就查右子树,同时减去当前节点的次数与左子树的大小
}
同时还要注意一点,此题的排名是要再+1的,样例的正确输出应该是3 3 1 5
然后是完整版代码
Code:
#include<iostream>
#include<cstdio>
using namespace std;
const int INF=0x7fffffff;
int cont;
struct node{
int val,ls,rs,cnt,siz;
}tree[];
int n,opt,xx;
void add(int x,int v)
{
tree[x].siz++;
if(tree[x].val==v){
tree[x].cnt++;
return ;
}
if(tree[x].val>v){
if(tree[x].ls!=)
add(tree[x].ls,v);
else{
cont++;
tree[cont].val=v;
tree[cont].siz=tree[cont].cnt=;
tree[x].ls=cont;
}
}
else{
if(tree[x].rs!=)
add(tree[x].rs,v);
else{
cont++;
tree[cont].val=v;
tree[cont].siz=tree[cont].cnt=;
tree[x].rs=cont;
}
}
}
int queryfr(int x, int val, int ans) {
if (tree[x].val>=val)
{
if (tree[x].ls==)
return ans;
else
return queryfr(tree[x].ls,val,ans);
}
else
{
if (tree[x].rs==)
return (tree[x].val<val) ? tree[x].val : ans;
if (tree[x].cnt!=)
return queryfr(tree[x].rs,val,tree[x].val);
else
return queryfr(tree[x].rs,val,ans);
}
}
int queryne(int x, int val, int ans) {
if (tree[x].val<=val)
{
if (tree[x].rs==)
return ans;
else
return queryne(tree[x].rs,val,ans);
}
else
{
if (tree[x].ls==)
return (tree[x].val>val)? tree[x].val : ans;
if (tree[x].cnt!=)
return queryne(tree[x].ls,val,tree[x].val);
else
return queryne(tree[x].ls,val,ans);
}
}
int queryrk(int x,int rk)
{
if(x==) return INF;
if(tree[tree[x].ls].siz>=rk)
return queryrk(tree[x].ls,rk);
if(tree[tree[x].ls].siz+tree[x].cnt>=rk)
return tree[x].val;
return queryrk(tree[x].rs,rk-tree[tree[x].ls].siz-tree[x].cnt);
}
int queryval(int x,int val)
{
if(x==) return ;
if(val==tree[x].val) return tree[tree[x].ls].siz+;
if(val<tree[x].val) return queryval(tree[x].ls,val);
return queryval(tree[x].rs,val)+tree[tree[x].ls].siz+tree[x].cnt;
}
inline int read()
{
int r=,w=;
char ch=getchar();
while(ch<''||ch>''){
if(ch=='-') w=-;
ch=getchar();
}
while(ch>=''&&ch<=''){
r=(r<<)+(r<<)+(ch^);
ch=getchar();
}
return r*w;
}
int main()
{
n=read();
while(n--){
opt=read();xx=read();
if(opt==) printf("%d\n",queryval(,xx)+);
else if(opt==) printf("%d\n",queryrk(,xx));
else if(opt==) printf("%d\n",queryfr(,xx,-INF));
else if(opt==) printf("%d\n",queryne(,xx,INF));
else{
if(cont==){
cont++;
tree[cont].cnt=tree[cont].siz=;
tree[cont].val=xx;
}
else add(,xx);
}
}
return ;
}
浅析BST二叉搜索树的更多相关文章
- 数据结构中很常见的各种树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)
数据结构中常见的树(BST二叉搜索树.AVL平衡二叉树.RBT红黑树.B-树.B+树.B*树) 二叉排序树.平衡树.红黑树 红黑树----第四篇:一步一图一代码,一定要让你真正彻底明白红黑树 --- ...
- [LeetCode] Serialize and Deserialize BST 二叉搜索树的序列化和去序列化
Serialization is the process of converting a data structure or object into a sequence of bits so tha ...
- bst 二叉搜索树简单实现
//数组实现二叉树: // 1.下标为零的元素为根节点,没有父节点 // 2.节点i的左儿子是2*i+1:右儿子2*i+2:父节点(i-1)/2: // 3.下标i为奇数则该节点有有兄弟,否则又左兄弟 ...
- 数据结构中常见的树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)
树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: BST树 ...
- [LeetCode] Minimum Absolute Difference in BST 二叉搜索树的最小绝对差
Given a binary search tree with non-negative values, find the minimum absolute difference between va ...
- 530 Minimum Absolute Difference in BST 二叉搜索树的最小绝对差
给定一个所有节点为非负值的二叉搜索树,求树中任意两节点的差的绝对值的最小值.示例 :输入: 1 \ 3 / 2输出:1解释:最小绝对差为1,其中 2 和 1 的差的绝对值为 ...
- LeetCode #938. Range Sum of BST 二叉搜索树的范围和
https://leetcode-cn.com/problems/range-sum-of-bst/ 二叉树中序遍历 二叉搜索树性质:一个节点大于所有其左子树的节点,小于其所有右子树的节点 /** * ...
- Leetcode938. Range Sum of BST二叉搜索树的范围和
给定二叉搜索树的根结点 root,返回 L 和 R(含)之间的所有结点的值的和. 二叉搜索树保证具有唯一的值. 示例 1: 输入:root = [10,5,15,3,7,null,18], L = 7 ...
- 标准BST二叉搜索树写法
本人最近被各种数据结构的实验折磨的不要不要的,特别是代码部分,对数据结构有严格的要求,比如写个BST要分成两个类,一个节点类,要给树类,关键是所以操作都要用函数完成,也就是在树类中不能直接操作节点,需 ...
随机推荐
- CSS(五)- 背景与边框 - 边框圆角与阴影基础用法
扩展阅读 本文仅仅做border的基础使用,想要深入了解的话可以戳以下几个链接,觉得作者写的很好. CSS Backgrounds and Borders Module Level 3 CSS魔法堂: ...
- redis(十八):Redis 配置
#redis.conf# Redis configuration file example.# ./redis-server /path/to/redis.conf ################# ...
- 机器学习实战基础(二十五):sklearn中的降维算法PCA和SVD(六) 重要接口,参数和属性总结
到现在,我们已经完成了对PCA的讲解.我们讲解了重要参数参数n_components,svd_solver,random_state,讲解了三个重要属性:components_, explained_ ...
- linux专题(八):用户组管理
http://dwz.date/UDf 每个用户都有一个用户组,系统可以对一个用户组中的所有用户进行集中管理.不同Linux 系统对用户组的规定有所不同,如Linux下的用户属于与它同名的用户组,这个 ...
- 【Maven】总结
导言:生产环境下开发不再是一个项目一个工程,而是每一个模块创建一个工程,而多个模块整合在一起就需要 使用到像 Maven 这样的构建工具. 1 Why? 1.1 真的需要吗? Maven 是干什么用的 ...
- React js ReactDOM.render 语句后面不能加分号
<!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <title&g ...
- 一口气说出 4 种分布式一致性 Session 实现方式,面试杠杠的~
前言 公司有一个 Web 管理系统,使用 Tomcat 进行部署.由于是后台管理系统,所有的网页都需要登录授权之后才能进行相应的操作. 起初这个系统的用的人也不多,为了节省资源,这个系统仅仅只是单机部 ...
- C++语法小记---同名覆盖
同名覆盖 子类中的同名成员会覆盖父类中的同名成员,但是在内存中仍然存在,只是无法直接访问,需要加上域名才能访问 子类中的同名函数会覆盖父类中的函数,复写是同名覆盖的一种特殊情况,只要不是多态场景,复写 ...
- 05 ES6模块化规范基础详解
ES6模块规范 1.1 ES6规范说明 历史上,JavaScript 一直没有模块(module)体系,无法将一个大程序拆分成互相依赖的小文件,再用简单的方法拼装起来.其他语言都有这项功能,比如 Ru ...
- Oracle可视化工具连接
Oracle可是化工具有很多,以下只列举sql developer和sql plus这两款连接方式 sql developer: SQL Develope启动后,需要创建一个数据库连接,只有创建了数据 ...