需求:

利用一个手写数字“先验数据”集,使用knn算法来实现对手写数字的自动识别;

先验数据(训练数据)集:

♦数据维度比较大,样本数比较多。

♦ 数据集包括数字0-9的手写体。

♦每个数字大约有200个样本。

♦每个样本保持在一个txt文件中。

♦手写体图像本身的大小是32x32的二值图,转换到txt文件保存后,内容也是32x32个数字,0或者1,如下:

♦目录trainingDigits存放的是大约2000个训练数据

♦目录testDigits存放大约900个测试数据。

trainingDigits文件夹中为训练数据,里面存储的都是32*32的txt格式的数字图像数值矩阵。testDigits文件夹中为测试数据,存储格式与trainingDigits中相同。文件格式名例如:0_1.txt,0为数字的标签(即数字本身),1为表示数字0的第一个文件。训练数据是多张32*32手写图像的二维矩阵,所谓二维矩阵就是整个图像空白的地方使用0描述,写字的地方使用1描述,

代码python:https://github.com/kongxiaoshuang/KNN

#-*- coding: utf-8 -*-
from numpy import *
import operator import matplotlib
import matplotlib.pyplot as plt def createDataSet():
group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
labels = ['A', 'A', 'B', 'B']
return group, labels def classify0(inX, dataSet, labels, k): #inX为用于分类的输入向量,dataSet为输入的训练样本集, labels为训练标签,k表示用于选择最近的数目
dataSetSize = dataSet.shape[0] #dataSet的行数
diffMat = tile(inX, (dataSetSize, 1)) - dataSet #将inX数组复制成与dataSet相同行数,与dataSet相减,求坐标差
sqDiffMat = diffMat**2 #diffMat的平方
sqDistances = sqDiffMat.sum(axis=1) #将sqDiffMat每一行的所有数相加
distances = sqDistances**0.5 #开根号,求点和点之间的欧式距离
sortedDistIndicies = distances.argsort() #将distances中的元素从小到大排列,提取其对应的index,然后输出到sortedDistIndicies
classCount = {} #创建字典
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]] #前k个标签数据
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 #判断classCount中有没有对应的voteIlabel,
# 如果有返回voteIlabel对应的值,如果没有则返回0,在最后加1。为了计算k个标签的类别数量
sortedClassCount = sorted(classCount.items(),
key=operator.itemgetter(1), reverse=True) #生成classCount的迭代器,进行排序,
# operator.itemgetter(1)以标签的个数降序排序
return sortedClassCount[0][0] #返回个数最多的标签 def file2matrix(filename):
fr = open(filename)
arrayOLines = fr.readlines() #读入所有行
numberOfLines = len(arrayOLines) #行数
returnMat = zeros((numberOfLines, 3)) #创建数组,数据集
classLabelVector = [] #标签集
index = 0
for line in arrayOLines:
line = line.strip() #移除所有的回车符
listFromLine = line.split('\t') #把一个字符串按\t分割成字符串数组
returnMat[index,:] = listFromLine[0:3] #取listFromLine的前三个元素放入returnMat
classLabelVector.append(int(listFromLine[-1])) #选取listFromLine的最后一个元素依次存入classLabelVector列表中
index += 1
return returnMat, classLabelVector def autoNorm(dataSet):
minVals = dataSet.min(0) #0表示从列中选取最小值
maxVals = dataSet.max(0) #选取最大值
ranges = maxVals-minVals
normDataSet = zeros(shape(dataSet)) #创建一个与dataSet大小相同的零矩阵
m = dataSet.shape[0] #取dataSet得行数
normDataSet = dataSet - tile(minVals, (m, 1)) #将minVals复制m行 与dataSet数据集相减
#归一化相除
normDataSet = normDataSet/tile(ranges, (m, 1)) #将最大值-最小值的值复制m行 与normDataSet相除,即归一化
return normDataSet, ranges, minVals #normDataSet为归一化特征值,ranges为最大值-最小值 def datingClassTest():
hoRatio = 0.10 #测试数据占总数据的百分比
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt') #将文本信息转成numpy格式
#datingDataMat为数据集,datingLabels为标签集
normMat, ranges, minVals = autoNorm(datingDataMat) #将datingDataMat数据归一化
#normMat为归一化数据特征值,ranges为特征最大值-最小值,minVals为最小值
m = normMat.shape[0] #取normMat的行数
numTestVecs = int(m*hoRatio) #测试数据的行数
errorCount = 0.0 #错误数据数量
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m, :], datingLabels[numTestVecs:m], 3)
#classify0为kNN分类器,normMat为用于分类的输入向量,normMat为输入的训练样本集(剩余的90%)
#datingLabels为训练标签,3表示用于选择最近邻居的数目
print("the classifier came back with: %d, the real answer is: %d" %(classifierResult, datingLabels[i]))
if (classifierResult != datingLabels[i]):errorCount += 1.0 #分类器结果和原标签不一样,则errorCount加1
print("the total error rate is : %f" %(errorCount/float(numTestVecs))) # datingClassTest() # datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
#
# normDataSet, ranges, minVals = autoNorm(datingDataMat) # fig = plt.figure()
# ax = fig.add_subplot(111) #一行一列一个
# ax.scatter(datingDataMat[:,1], datingDataMat[:,2],
# 15.0*array(datingLabels), 15.0*array(datingLabels)) #scatter画散点图,使用标签属性绘制不同颜色不同大小的点
# plt.show() # #测试分类器
# group, labels = createDataSet()
# label = classify0([1,1], group, labels, 3)
# print(label) from os import listdir def img2vector (filename):
returnVect = zeros((1, 1024)) #创建一个1*1024的数组
fr = open(filename)
for i in range(32):
lineStr = fr.readline() #每次读入一行
for j in range(32):
returnVect[0, 32*i+j] = int(lineStr[j])
return returnVect def handwritingClassTest():
hwLabels = [] #标签集
trainingFileList = listdir('E:/digits/trainingDigits') #listdir获取训练集的文件目录
m = len(trainingFileList) #文件数量
trainingMat = zeros((m, 1024)) #一个数字1024个字符,创建m*1024的数组
for i in range(m):
fileNameStr = trainingFileList[i] #获取文件名
fileStr = fileNameStr.split('.')[0] #以'.'将字符串分割,并取第一项,即0_0.txt取0_0
classNumStr = int(fileStr.split('_')[0]) #以'_'将字符串分割,并取第一项
hwLabels.append(classNumStr) #依次存入hwLabels标签集
trainingMat[i, :] = img2vector('E:/digits/trainingDigits/%s' % fileNameStr) #将每个数字的字符值依次存入trainingMat
testFileList = listdir('E:/digits/testDigits') #读入测试数据集
errorCount = 0.0 #测试错误数量
mTest = len(testFileList) #测试集的数量
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0]) #测试数据标签
vectorUnderTest = img2vector('E:/digits/testDigits/%s' % fileNameStr) #读入测试数据
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3) #分类器kNN算法,3为最近邻数目
print("the calssifier came back with: %d, the real answer is : %d" %(classifierResult, classNumStr))
if (classifierResult != classNumStr): errorCount +=1.0
print("\nthe total number of errors is : %f" % errorCount)
print("\nthe total error rate is :%f" % (errorCount/float(mTest))) handwritingClassTest()

KNN算法识别手写数字的更多相关文章

  1. 基于OpenCV的KNN算法实现手写数字识别

    基于OpenCV的KNN算法实现手写数字识别 一.数据预处理 # 导入所需模块 import cv2 import numpy as np import matplotlib.pyplot as pl ...

  2. KNN (K近邻算法) - 识别手写数字

    KNN项目实战——手写数字识别 1. 介绍 k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法.它的工作原理是:存在一个 ...

  3. 机器学习--kNN算法识别手写字母

    本文主要是用kNN算法对字母图片进行特征提取,分类识别.内容如下: kNN算法及相关Python模块介绍 对字母图片进行特征提取 kNN算法实现 kNN算法分析 一.kNN算法介绍 K近邻(kNN,k ...

  4. KNN算法案例--手写数字识别

    import numpy as np import matplotlib .pyplot as plt import pandas as pd from sklearn.neighbors impor ...

  5. KNN算法实现手写数字

    from numpy import * import operator from os import listdir def classify0(inX, dataSet, labels, k): d ...

  6. KNN 算法-实战篇-如何识别手写数字

    公号:码农充电站pro 主页:https://codeshellme.github.io 上篇文章介绍了KNN 算法的原理,今天来介绍如何使用KNN 算法识别手写数字? 1,手写数字数据集 手写数字数 ...

  7. C#中调用Matlab人工神经网络算法实现手写数字识别

    手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化  投影  矩阵  目标定位  Matlab 手写数字图像识别简介: 手写 ...

  8. 使用神经网络来识别手写数字【译】(三)- 用Python代码实现

    实现我们分类数字的网络 好,让我们使用随机梯度下降和 MNIST训练数据来写一个程序来学习怎样识别手写数字. 我们用Python (2.7) 来实现.只有 74 行代码!我们需要的第一个东西是 MNI ...

  9. 学习笔记TF024:TensorFlow实现Softmax Regression(回归)识别手写数字

    TensorFlow实现Softmax Regression(回归)识别手写数字.MNIST(Mixed National Institute of Standards and Technology ...

随机推荐

  1. Matlab图像处理——中值滤波medfilt2问题解决

    本文链接:https://blog.csdn.net/Pxzly1117/article/details/79201772程序: I=imread('13.jpg');%读入图像imshow(I);h ...

  2. Ionic4.x 创建页面以及页面跳转

    创建页面: 1.cd 到项目目录 2.通过ionic g page 页面名称 3.创建完成组件以后会在 src 目录下面多一个 button 的目录,它既是一个页面也是一个 模块. 4.如果我们想在 ...

  3. js实现文本框支持加减运算的方法

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN""http://www.w3.org/T ...

  4. 012-多线程-JUC集合-Queue-SynchronousQueue和LinkedTransferQueue

    一.SynchronousQueue概述 SynchronousQueue是一个不存储元素的队列.每一个put操作必须等待一个take操作,否则不能继续添加元素. 它支持公平访问队列.默认情况下线程采 ...

  5. 011-多线程-JUC集合-Queue-PriorityBlockingQueue和DelayQueue

    一.PriorityBlockingQueue简介 PriorityBlockingQueue是一个支持优先级的无界阻塞队列.默认情况下元素采用自然顺序升序排列.也可以自定义类实现compareTo( ...

  6. 多林环境中的ADFS

    公司有两个或更多Active Directory林,但是只有一个ADFS,如何让ADFS支持多个域林呢?(一个ADFS只能部署在一个域中,不能跨域) 答案是:在部署ADFS的林和所有其他林之间建立双向 ...

  7. Docker从入门到动手实践

    一些理论知识,我这里就不累赘了 docker 入门资料,参考:https://yeasy.gitbooks.io/docker_practice/content/ Dockerfile常用命令,图片来 ...

  8. Docker 网络(十一)

    目录 一.none 网络 二.host 网络 三.bridge 网络 四.User-defined 网络 1.创建 my_bridge 网络 2.自定义网络 IP 段 3.给容器指定分配静态 IP 4 ...

  9. todolist形式的搜索框,分开组件写的,点击上下键时,框内显示当前选中的内容

    ### 首先  安装react 脚手架 cnpm  install  create-react-app  -g      //只需要在电脑上安装一次就好了,以后不用再下载了 ### 创建项目 crea ...

  10. 白嫖百度 Tesla V100 笔记(在 AI Studio 上使用 tensorflow 和 pytorch 的方法)

    登陆百度 AI Studio 并按照教程创建新项目 启动项目并进入控制台 下载 Anaconda3/Miniconda3 安装脚本 安装在 ~/work/*conda3 目录 输入命令 source ...