hadoop HA+Federation(高可用联邦)搭建配置(二)
hadoop HA+Federation(高可用联邦)搭建配置(二)
标签(空格分隔): hadoop
core-site.xml
<?xml version="1.0" encoding="utf-8"?>
# <configuration> # 注意此处的修改
<configuration xmlns:xi="http://www.w3.org/2001/XInclude">
<xi:include href="/app/hadoop/etc/hadoop/mountTable.xml" /> # 此处引入federation的额外配置文件
<property>
<!-- 指定hdfs的nameservice名称,在 mountTable.xml 文件中会引用 -->
<name>fs.defaultFS</name>
<value>viewfs://flashhadoop/</value>
</property>
<!-- 指定hadoop数据存储目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/app/hadoop/tmp</value>
</property>
<property>
<!-- 注意此处将该配置项从 hdfs-site.xml 文件中迁移到此处, -->
<name>dfs.journalnode.edits.dir</name>
<value>/data1/data/flashhadoop/journalnode/data</value>
</property>
<!-- 指定zookeeper地址 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>XXX:2181</value>
</property>
</configuration>
mountTable.xml
<?xml version="1.0" encoding="utf-8"?>
<configuration>
<property>
<!-- 将 hdfs 的 /usr 目录挂载到 ns1 的NN下管理,整个federation的不同HA集群也是可以读写此目录的,但是在指定路径是需要指定完全路径 -->
<name>fs.viewfs.mounttable.flashhadoop.link./usr</name>
<value>hdfs://namespace1</value>
</property>
<property>
<name>fs.viewfs.mounttable.flashhadoop.link./home</name>
<value>hdfs://namespace2</value>
</property>
<property>
<!-- 指定 /tmp 目录,许多依赖hdfs的组件可能会用到此目录 -->
<name>fs.viewfs.mounttable.flashhadoop.link./tmp</name>
<value>hdfs://namespace1/tmp</value>
</property>
</configuration>
hdfs-site.xml
<?xml version="1.0" encoding="utf-8"?>
<!-- HDFS-HA 配置 -->
<configuration>
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<property>
<!-- 白名单:仅允许以下datanode连接到NN,一行一个,也可以指定一个文件 -->
<name>dfs.hosts</name>
<value>
<!-- ~/VMBigData/hadoop/default/etc/hadoop/hosts.allow -->
VECS00001
VECS00002
VECS00004
VECS0005
</value>
</property>
<property>
<!-- 黑名单:不允许以下datanode连接到NN,一行一个,也可以指定一个文件 -->
<name>dfs.hosts.exclude</name>
<value></value>
</property>
<property>
<!-- 集群的命名空间、逻辑名称,可配置多个,但是与 cmt.xml 配置对应 -->
<name>dfs.nameservices</name>
<value>namespace1,namespace2</value>
</property>
<property>
<!-- 命名空间中所有NameNode的唯一标示。该标识指示集群中有哪些NameNode。目前单个集群最多只能配置两个NameNode -->
<name>dfs.ha.namenodes.namespace1</name>
<value>nn1,nn2</value>
</property>
<property>
<name>dfs.ha.namenodes.namespace2</name>
<value>nn1,nn2</value>
</property>
<property>
<name>dfs.namenode.rpc-address.namespace1.nn1</name>
<value>VECS00001:8020</value>
</property>
<property>
<name>dfs.namenode.http-address.namespace1.nn1</name>
<value>VECS00001:50070</value>
</property>
<property>
<name>dfs.namenode.rpc-address.namespace1.nn2</name>
<value>VECS00002:8020</value>
</property>
<property>
<name>dfs.namenode.http-address.namespace1.nn2</name>
<value>VECS00002:50070</value>
</property>
# =====================namespace2 =======================
<property>
<name>dfs.namenode.rpc-address.namespace2.nn1</name>
<value>VECS00004:8020</value>
</property>
<property>
<name>dfs.namenode.http-address.namespace2.nn1</name>
<value>VECS00004:50070</value>
</property>
<property>
<name>dfs.namenode.rpc-address.namespace2.nn2</name>
<value>VECS0005:8020</value>
</property>
<property>
<name>dfs.namenode.http-address.namespace2.nn2</name>
<value>VECS0005:50070</value>
</property>
<property>
<!-- JournalNode URLs,ActiveNameNode 会将 Edit Log 写入这些 JournalNode 所配置的本地目录即 dfs.journalnode.edits.dir -->
<name>dfs.namenode.shared.edits.dir</name>
<!-- 注意此处的namespace1,当配置文件所在节点处于namespace1集群时,此处为namespace1,当处于namespace2集群时,此处为namespace2 ,一定注意是在各个namenode 节点,-->
<value>qjournal://VECS00001:8485;VECS00002:8485;VECS00003:8485;VECS00004:8485;VECS0005:8485/namespace1</value>
</property>
<!-- JournalNode 用于存放 editlog 和其他状态信息的目录 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/data1/data/flashhadoop/journal/data</value>
</property>
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<property>
<name>dfs.client.failover.proxy.provider.namespace1</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<property>
<name>dfs.client.failover.proxy.provider.namespace2</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 一种关于 NameNode 的隔离机制(fencing) -->
<property>
<name>dfs.ha.fencing.methods</name>
<value>
sshfence
shell(/bin/true)
</value>
</property>
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/vagrant/.ssh/id_rsa</value>
</property>
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<!-- 创建的namenode文件夹位置,如有多个用逗号隔开。配置多个的话,每一个目录下数据都是相同的,达到数据冗余备份的目的 -->
<value>file:///data1/data/flashHadoop/namenode/,file:///data2/data/flashHadoop/namenode/</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<!-- 创建的datanode文件夹位置,多个用逗号隔开,实际不存在的目录会被忽略 -->
<value>file:///data1/HDATA/dfs/local,
file:///data2/HDATA/dfs/local,
file:///data3/HDATA/dfs/local,
file:///data4/HDATA/dfs/local,
file:///data5/HDATA/dfs/local,
file:///data6/HDATA/dfs/local,
file:///data7/HDATA/dfs/local,
file:///data8/HDATA/dfs/local,
file:///data9/HDATA/dfs/local,
file:///data10/HDATA/dfs/local,
file:///data11/HDATA/dfs/local,
file:///data12/HDATA/dfs/local</value>
</property>
</configuration>
Yarn-site.xml
<?xml version="1.0"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
-->
<configuration>
<!-- Site specific YARN configuration properties -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce_shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<property>
<description>Where to aggregate logs to.</description>
<name>yarn.nodemanager.remote-app-log-dir</name>
<value>hdfs://flashHadoop/tmp/logs</value>
</property>
<property>
<name>yarn.nodemanager.remote-app-log-dir-suffix</name>
<value>logs</value>
</property>
<property>
<description>Classpath for typical applications.</description>
<name>yarn.application.classpath</name>
<value>
$HADOOP_CONF_DIR,
$HADOOP_COMMON_HOME/*,$HADOOP_COMMON_HOME/lib/*,
$HADOOP_HDFS_HOME/*,$HADOOP_HDFS_HOME/lib/*,
$HADOOP_MAPRED_HOME/*,$HADOOP_MAPRED_HOME/lib/*,
$HADOOP_YARN_HOME/*,$HADOOP_YARN_HOME/lib/*,
$HADOOP_COMMON_HOME/share/hadoop/common/*,
$HADOOP_COMMON_HOME/share/hadoop/common/lib/*,
$HADOOP_COMMON_HOME/share/hadoop/hdfs/*,
$HADOOP_COMMON_HOME/share/hadoop/hdfs/lib/*,
$HADOOP_COMMON_HOME/share/hadoop/mapreduce/*,
$HADOOP_COMMON_HOME/share/hadoop/mapreduce/lib/*,
$HADOOP_COMMON_HOME/share/hadoop/yarn/*,
$HADOOP_COMMON_HOME/share/hadoop/yarn/lib/*
</value>
</property>
<!-- resourcemanager config -->
<property>
<name>yarn.resourcemanager.connect.retry-interval.ms</name>
<value>2000</value>
</property>
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.ha.automatic-failover.embedded</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>Yarn_Cluster</value>
</property>
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>VECS00001</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>VECS00002</value>
</property>
<!-- CapacityScheduler -->
<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
</property>
<!-- CapacityScheduler End-->
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms</name>
<value>5000</value>
</property>
<!-- 下线yarn nodemanager的列表文件。-->
<property>
<name>yarn.resourcemanager.nodes.exclude-path</name>
<value>/app/hadoop/etc/hadoop/yarn.exclude</value>
<final>true</final>
</property>
<!-- ZKRMStateStore config -->
<property>
<name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>VECS00002:2181,VECS00001:2181,VECS00047:2181,VECS01118:2181,VECS01119:2181</value>
</property>
<property>
<name>yarn.resourcemanager.zk.state-store.address</name>
<value>VECS00002:2181,VECS00001:2181,VECS00047:2181,VECS01118:2181,VECS01119:2181</value>
</property>
<!-- applications manager interface -->
<!--客户端通过该地址向RM提交对应用程序操作-->
<property>
<name>yarn.resourcemanager.address.rm1</name>
<value>VECS00001:23140</value>
</property>
<property>
<name>yarn.resourcemanager.address.rm2</name>
<value>VECS00002:23140</value>
</property>
<!-- scheduler interface -->
<!--向RM调度资源地址-->
<property>
<name>yarn.resourcemanager.scheduler.address.rm1</name>
<value>VECS00001:23130</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm2</name>
<value>VECS00002:23130</value>
</property>
<!-- RM admin interface -->
<property>
<name>yarn.resourcemanager.admin.address.rm1</name>
<value>VECS00001:23141</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address.rm2</name>
<value>VECS00002:23141</value>
</property>
<!-- RM resource-tracker interface nm向rm汇报心跳&& 领取任务-->
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm1</name>
<value>VECS00001:23125</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm2</name>
<value>VECS00002:23125</value>
</property>
<!-- RM web application interface -->
<property>
<name>yarn.resourcemanager.webapp.address.rm1</name>
<value>VECS00001:8088</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm2</name>
<value>VECS00002:8088</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.https.address.rm1</name>
<value>VECS00001:23189</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.https.address.rm2</name>
<value>VECS00002:23189</value>
</property>
<property>
<name>yarn.log.server.url</name>
<value>http://VECS00003:19888/jobhistory/logs</value>
</property>
<property>
<name>yarn.web-proxy.address</name>
<value>VECS00003:54315</value>
</property>
<!-- Node Manager Configs -->
<property>
<description>Address where the localizer IPC is.</description>
<name>yarn.nodemanager.localizer.address</name>
<value>0.0.0.0:23344</value>
</property>
<property>
<description>NM Webapp address.</description>
<name>yarn.nodemanager.webapp.address</name>
<value>0.0.0.0:8042</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.local-dirs</name>
<value>file:///data12/HDATA/yarn/local,
file:///data11/HDATA/yarn/local,
file:///data10/HDATA/yarn/local,
file:///data9/HDATA/yarn/local,
file:///data8/HDATA/yarn/local,
file:///data7/HDATA/yarn/local,
file:///data6/HDATA/yarn/local,
file:///data5/HDATA/yarn/local,
file:///data4/HDATA/yarn/local,
file:///data3/HDATA/yarn/local,
file:///data2/HDATA/yarn/local,
file:///data1/HDATA/yarn/local</value>
</property>
<property>
<name>yarn.nodemanager.log-dirs</name>
<value>file:///data12/HDATA/yarn/logs,
file:///data11/HDATA/yarn/logs,
file:///data10/HDATA/yarn/logs,
file:///data9/HDATA/yarn/logs,
file:///data8/HDATA/yarn/logs,
file:///data7/HDATA/yarn/logs,
file:///data6/HDATA/yarn/logs,
file:///data5/HDATA/yarn/logs,
file:///data4/HDATA/yarn/logs,
file:///data3/HDATA/yarn/logs,
file:///data2/HDATA/yarn/logs,
file:///data1/HDATA/yarn/logs</value>
</property>
<property>
<name>yarn.nodemanager.delete.debug-delay-sec</name>
<value>1200</value>
</property>
<property>
<name>mapreduce.shuffle.port</name>
<value>23080</value>
</property>
<property>
<name>yarn.resourcemanager.work-preserving-recovery.enabled</name>
<value>true</value>
</property>
<!-- tuning -->
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>102400</value>
</property>
<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>28</value>
</property>
<!-- tuning yarn container -->
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>8192</value>
</property>
<property>
<name>yarn.scheduler.increment-allocation-mb</name>
<value>512</value>
</property>
<property>
<name>yarn.scheduler.fair.allow-undeclared-pools</name>
<value>false</value>
</property>
<property>
<name>yarn.scheduler.fair.allow-undeclared-pools</name>
<value>false</value>
</property>
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
<property>
<name>yarn.nodemanager.pmem-check-enabled</name>
<value>false</value>
</property>
<property>
<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>4</value>
<description>Ratio between virtual memory to physical memory when setting memory limits for containers</description>
</property>
<property>
<name>yarn.log-aggregation.retain-seconds</name>
<value>1209600</value>
</property>
<!-- 新增新特性 -->
<property>
<name>yarn.node-labels.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.node-labels.fs-store.root-dir</name>
<value>hdfs://flashHadoop/yarn/yarn-node-labels/</value>
</property>
<!-- timeline server -->
<property>
<name>yarn.timeline-service.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.system-metrics-publisher.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.timeline-service.generic-application-history.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.timeline-service.http-cross-origin.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.timeline-service.hostname</name>
<value>VECS00001</value>
</property>
<property>
<name>yarn.timeline-service.handler-thread-count</name>
<value>10</value>
</property>
<property>
<name>yarn.timeline-service.leveldb-timeline-store.path</name>
<value>/app/hadoop/tmp/yarn/timeline/</value>
</property>
<property>
<name>yarn.timeline-service.leveldb-state-store.path</name>
<value>/app/hadoop/tmp/yarn/timeline/timeline-state-store.ldb</value>
</property>
<!--调整resourcemanager -->
<property>
<name>yarn.resourcemanager.client.thread-count</name>
<value>100</value>
</property>
<property>
<name>yarn.resourcemanager.amlauncher.thread-count</name>
<value>100</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.client.thread-count</name>
<value>100</value>
</property>
</configuration>
mapred-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
-->
<!-- Put site-specific property overrides in this file. -->
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>VECS00003:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>VECS00003:19888</value>
</property>
<property>
<name>yarn.app.mapreduce.am.staging-dir</name>
<value>/user</value>
</property>
<!-- tuning mapreduce -->
<property>
<name>mapreduce.map.memory.mb</name>
<value>2048</value>
</property>
<property>
<name>mapreduce.map.java.opts</name>
<value>-Xmx1536m -Dfile.encoding=UTF-8</value>
</property>
<property>
<name>mapreduce.reduce.memory.mb</name>
<value>6144</value>
</property>
<property>
<name>mapreduce.reduce.java.opts</name>
<value>-Xmx4608m -Dfile.encoding=UTF-8</value>
</property>
<property>
<name>mapreduce.map.cpu.vcores</name>
<value>1</value>
</property>
<property>
<name>mapreduce.reduce.cpu.vcores</name>
<value>2</value>
</property>
<property>
<name>mapreduce.cluster.local.dir</name>
<value>file:///data8/HDATA/mapred/local,
file:///data7/HDATA/mapred/local,
file:///data6/HDATA/mapred/local,
file:///data5/HDATA/mapred/local,
file:///data4/HDATA/mapred/local,
file:///data3/HDATA/mapred/local,
file:///data2/HDATA/mapred/local,
file:///data1/HDATA/mapred/local</value>
</property>
<!--map and shuffle and reduce turning -->
<property>
<name>mapreduce.task.io.sort.mb</name>
<value>300</value>
</property>
<!-- 30*10=io.sort.mb -->
<property>
<name>mapreduce.jobhistory.max-age-ms</name>
<value>1296000000</value>
<source>mapred-default.xml</source>
</property>
<property>
<name>mapreduce.jobhistory.joblist.cache.size</name>
<value>200000</value>
<source>mapred-default.xml</source>
</property>
</configuration>
hdfs-site.xml namespace1 && namespace2 !!!
在 hdfs-site.xml 文件中的 dfs.namenode.shared.edits.dir 配置项:
当配置文件所在节点处于namespace1集群时,此处值末尾部分为namespace1,当处于namespace2集群时,则为namespace2.
启动过程
零,格式化zkfc
在namespace1 nn1(VECS00001) && namespace2(VECS00004) nn1 do:
sudo su - hdfs
hdfs zkfc -formatZK
一,格式化namenode
在namespace1 nn1(VECS00001) && namespace2(VECS00004) nn1 do: (必须指定 clusterid)
hdfs namenode -format -clusterid XXXXXXX
二,启动格式化过后的nn
在namespace1 nn1(VECS00001) && namespace2(VECS00004) nn1 do:
sudo su - hdfs
hadoop-daemons.sh start namenode
三,standbu nn 同步active 元数据
在namespace1 nn2(VECS00002) && namespace2(VECS00005) nn2 do:
sudo su - hdfs
hdfs namenode -bootstrapStandby
hadoop-daemons.sh start namenode
同步完后 并启动
四,启动zkfc
在namespace1 nn1 nn2 && namespace2 nn1 nn2 do:
sudo su - hdfs
hadoop-daemons.shstart zkfc
启动集群所有datanode
hadoop-daemon.sh start datanode
五,启动yarn 集群
start resourcemanager
start nodemanager
start webproxy
start historyserver
hadoop HA+Federation(高可用联邦)搭建配置(二)的更多相关文章
- hadoop HA+Federation(高可用联邦)搭建配置(一)
hadoop HA+Federation(高可用联邦)搭建配置(一) 标签(空格分隔): 未分类 介绍 hadoop 集群一共有4种部署模式,详见<hadoop 生态圈介绍>. HA联邦模 ...
- Hadoop入门学习笔记-第三天(Yarn高可用集群配置及计算案例)
什么是mapreduce 首先让我们来重温一下 hadoop 的四大组件:HDFS:分布式存储系统MapReduce:分布式计算系统YARN: hadoop 的资源调度系统Common: 以上三大组件 ...
- MongoDB高可用集群配置的方案
>>高可用集群的解决方案 高可用性即HA(High Availability)指的是通过尽量缩短因日常维护操作(计划)和突发的系统崩溃(非计划)所导致的停机时间,以提高系统和应用的可用性. ...
- OpenStack高可用方案及配置
1 OpenStack高可用介绍 1.1 无状态和有状态服务 无状态服务指的是该服务接收的请求前后之间没有相关关系,接收并处理完该请求后不保存任何状态,在OpenStack的服务中常见的无状态服务 ...
- HDFS的HA(高可用)
HDFS的HA(高可用) 概述 (1)实现高可用最关键的策略是[消除单点故障].HA 严格来说应该分成各个组件的 HA 机制:HDFS 的 HA 和 YARN 的 HA. (2)Hadoop2.0 之 ...
- MongoDB高可用集群配置方案
原文链接:https://www.jianshu.com/p/e7e70ca7c7e5 高可用性即HA(High Availability)指的是通过尽量缩短因日常维护操作(计划)和突发的系统崩溃(非 ...
- 美团点评基于MGR的CMDB高可用架构搭建之路【转】
王志朋 美团点评DBA 曾在京东金融担任DBA,目前就职于美团点评,主要负责金融业务线数据库及基础组件数据库的运维. MySQL Group Replication(以下简称MGR),于5.7.17版 ...
- MongoDB分片技术原理和高可用集群配置方案
一.Sharding分片技术 1.分片概述 当数据量比较大的时候,我们需要把数分片运行在不同的机器中,以降低CPU.内存和Io的压力,Sharding就是数据库分片技术. MongoDB分片技术类似M ...
- SpringCloud-day04-Eureka高可用集群配置
5.4Eureka高可用集群配置 在高并发的情况下一个注册中心难以满足,因此一般需要集群配置多台. 我们再新建两个module microservice-eureka-server-2002, m ...
随机推荐
- Java组合模式(思维导图)
图1 组合模式[点击查看图片] 1,以公司职员为例的结构 package com.cnblogs.mufasa.demo3; import java.util.ArrayList; import ja ...
- asp.net 代码片段的
片段标签 说明 <% ...
- python实现蓝牙通信
安装和示例 linux下安装 -dev sudo pip install bluepy 官方示例 import btle class MyDelegate(btle.DefaultDelegate): ...
- 2.4 使用 xpath 对xml 进行解析
public class Demo1 { /** * XPath提取XML文档数据 * xpath很强大 用来提取xml文档数据非常方便 * @throws Exception */ public s ...
- 运行时异常与受检异常有何异同、error和exception有什么区别
1.运行时异常与受检异常有何异同? 异常表示程序运行过程中可能出现的非正常状态,运行时异常表示虚拟机的通常操作中可能遇到的异常,是一种常见运行错误,只要程序设计得没有问题通常就不会发生.受检异常跟程序 ...
- 记录lucene.net的使用过程
之前公司要做一个信息展示的网站,领导说要用lucene.net来实现全文检索,类似百度的搜索功能,但是本人技术有限,只是基本实现搜索和高亮功能,特此记录: 先看下页面效果,首先我搜索“为什么APP消息 ...
- Scala高阶函数与泛型
1. Scala中的函数 在Scala中,函数是“头等公民”,就和数字一样.可以在变量中存放函数,即:将函数作为变量的值(值函数). 2. scala中的匿名函数,即没有函数名称的函数,匿名函数常作为 ...
- 用实例的方式去理解storm的并发度
什么是storm的并发度 一个topology(拓扑)在storm集群上最总是以executor和task的形式运行在suppervisor管理的worker节点上.而worker进程都是运行在jvm ...
- js动画fireworks烟花
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 学习elasticsearch(一)linux环境搭建(2)——启动elasticsearch
在启动访问es的过程中遇到了各种的奇葩问题. 1.网上各种版本的启动方式让人眼花缭乱不知如何启动.简单粗暴——到es的bin目录下直接 执行 ./elasticsearch //显示启动,ctrl+c ...