题意翻译

区间取数

题目描述

有n个区间,在区间[ai,bi]中至少取任意互不相同的ci个整数。求在满足n个区间的情况下,至少要取多少个正整数。

输入输出格式

输入格式

多组数据。

第一行的一个整数T表示数据个数。对于每组数据,第一行包含一个整数n(1<=n<=50000)表示区间数。以下n行描述区间。输入的第(i+1)行包含三个整数ai,bi,ci,由空格分开。其中0<=ai<=bi<=50000,1<=ci<=bi-ai+1。

输出格式

对于每组数据,输出一个对于n个区间[ai,bi] 至少取ci个不同整数的数的总个数。

输入输出样例

输入样例#1:

1
5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1

输出样例#1:

6

解析:
这是一道差分约束的模板题,写完这一题之后可以更好地理解差分约束。 【差分约束系统】
差分约束系统是一种特殊的N元一次不等式组。它包含N个变量X1~XN以及M个约束条件,每个约束条件都是由两个变量作差构成的,形如Xi-Xj<=ck,其中ck是常数。我们要解决的问题是:求X的一组解,使得所有约束条件得到满足。 实际上,最短路径问题和最长路径问题都是某种程度上的差分约束系统,对于差分约束系统中的每个条件Xi-Xj>=ck我们可以变形为Xi<=Xj+ck。而单源最短/长路实际上是求了一个差分约束系统的最优解(最小/大的符合条件的情况)。
也就是说,对于一个无向图,我们得到的所有可达点之间的每一条简单路径,都是这个“路径”的差分约束系统的一组解(这个系统几乎没有约束条件)。如果我们要求某一个差分约束系统的最优解,就相当于在一张图上求解最短/长路。 为了便于理解,我们可以将求解最短/长路径的方法看做是求解差分约束的一种工具,将差分约束系统的条件变形作三角形不等式进行求解。 我们看回这道题目,我们会发现题意与差分约束系统十分相似。
假设s[k]为0~k之间最少取到的互不相同(隐藏条件)的整数,根据题意,我们容易得到s[bi]-s[ai-1]>=ci。
特别的,差分约束系统的题目总是有一些隐藏条件,这些条件我们也必须加入到差分约束系统中去,使得这些条件也成立。
本题中,隐藏条件有:
  1. 对于任意一个数,要不然选一次,要不然不选, 不能选两次。于是得到:s[k]-s[k-1]<=1
  2. 对于任意一个区间0~k-1,必然存在一个区间0~k选出的数要不然比0~k-1多,要不然选出的数一样多。于是得到:s[k]-s[k-1]>=0。

但是我们尴尬的发现他们不等号的方向不一致,没事,我们转化一下就好了。

条件1可以变为s[k-1]-s[k]>=-1。

注意一个问题:

如果Xi-Xj的约束条件是<=号,则我们要求的是最短路;

如果约束条件是>=号,则我们要求的是最长路(根据三角形不等式得出)。


首先,我们把0~k(此处的k为最大的那个bi)按照隐藏约束条件初始化,也就是,从每个k-1连一条长0的有向边至k,从每个k连一条长-1的边至k-1。

然后按照输入,依次加入ai-1 -> bi的长度为ci的有向边。

值得注意的是,这里数组下标不能为负数,那我们就给他加成正的,以0为初始阶段点开始,求最长路。

最优解便是d[k]了。

参考代码:(话说这道题快读会爆?!)

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<queue>
#include<algorithm>
#define N 100010
using namespace std;
queue<int> q;
struct node{
int next,ver,edge;
}g[N<<];
int head[N],tot,d[N],n;
bool v[N<<];
void add(int x,int y,int val)
{
g[++tot].ver=y,g[tot].edge=val;
g[tot].next=head[x],head[x]=tot;
}
void spfa(int x)
{
memset(d,-,sizeof(d));
memset(v,,sizeof(v));
d[x]=;v[x]=;
q.push(x);
while(q.size())
{
int index=q.front();q.pop();
v[index]=;
for(int i=head[index];i;i=g[i].next){
int y=g[i].ver,z=g[i].edge;
if(d[y]<d[index]+z){
d[y]=d[index]+z;
if(!v[y]) v[y]=,q.push(y);
}
}
}
}
int main()
{
int t;
cin>>t;
for(int k=;k<=t;k++)
{
tot=;
memset(g,,sizeof(g));
memset(head,,sizeof(head));
int cnt=-N;
scanf("%d",&n); for(int i=;i<=n;i++)
{
int x,y,c;
scanf("%d%d%d",&x,&y,&c);
add(x,y+,c);
cnt=max(cnt,y);
}
for(int i=;i<=cnt+;i++){
add(i-,i,),add(i,i-,-);
}
spfa();
if(k<t) printf("%d\n",d[cnt+]);
else printf("%d",d[cnt+]);
}
return ;
}

SP116 INTERVAL - Intervals的更多相关文章

  1. 60. Insert Interval && Merge Intervals

    Insert Interval Given a set of non-overlapping intervals, insert a new interval into the intervals ( ...

  2. 【题解】【区间】【二分查找】【Leetcode】Insert Interval & Merge Intervals

    Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessa ...

  3. Insert Interval & Merge Intervals

    Insert Intervals Given a non-overlapping interval list which is sorted by start point. Insert a new ...

  4. 56. Merge Intervals 57. Insert Interval *HARD*

    1. Merge Given a collection of intervals, merge all overlapping intervals. For example,Given [1,3],[ ...

  5. 合并区间 · Merge Intervals & 插入区间 · Insert Interval

    [抄题]: 给出若干闭合区间,合并所有重叠的部分. 给出的区间列表 => 合并后的区间列表: [ [ [1, 3], [1, 6], [2, 6], => [8, 10], [8, 10] ...

  6. [LeetCode] Merge Interval系列,题:Insert Interval,Merge Intervals

    Interval的合并时比较常见的一类题目,网上的Amazon面经上也有面试这道题的记录.这里以LeetCode上的例题做练习. Merge Intervals Given a collection ...

  7. leetcode 56. Merge Intervals 、57. Insert Interval

    56. Merge Intervals是一个无序的,需要将整体合并:57. Insert Interval是一个本身有序的且已经合并好的,需要将新的插入进这个已经合并好的然后合并成新的. 56. Me ...

  8. [LeetCode] Find Right Interval 找右区间

    Given a set of intervals, for each of the interval i, check if there exists an interval j whose star ...

  9. [LeetCode] Data Stream as Disjoint Intervals 分离区间的数据流

    Given a data stream input of non-negative integers a1, a2, ..., an, ..., summarize the numbers seen ...

随机推荐

  1. Ext this.getView(...).saveDocumentAs is not a function

    一.前言 Ext 导出数据,根据官网的代码,报:this.getView(...).saveDocumentAs is not a function 的问题. 参考:Ext Export not wo ...

  2. C++比起C来新增的拓展

    命名空间 register 在C语言横行的时代,为了加快运行速度,一些关键变量会被放入寄存器中,程序代码请求编译器把变量存入寄存器,然而C语言版的寄存器变量无法通过地址获得register变量.c++ ...

  3. GNU makefile 学习 - ongoing

    资料: <跟我一起写makefile>---中文,baiduNetdisk http://www.gnu.org/software/make/manual/make.html

  4. 《Mysql - 优化器是如何选择索引的?》

    一:概念 - 在 索引建立之后,一条语句可能会命中多个索引,这时,索引的选择,就会交由 优化器 来选择合适的索引. - 优化器选择索引的目的,是找到一个最优的执行方案,并用最小的代价去执行语句. 二: ...

  5. 在VMware Workstation10下CentOS7虚拟机中创建与主机共享文件夹的详细步骤

    一.前言 在使用虚拟机时,常常需要与宿主计算机(以下简称为主机)操作系统交换文件,为此需要在虚拟机与主机之间建立共享文件夹. 二. 安装VMTools 要使用共享文件机制,必须首先安装VMTools. ...

  6. python 手机App数据抓取实战一

    前言 当前手机使用成为互联网主流,每天手机App产生大量数据,学习爬虫的人也不能只会爬取网页数据,我们需要学习如何从手机 APP 中获取数据,本文就以豆果美食为例,讲诉爬取手机App的流程 环境准备 ...

  7. pandas数据结构之Series笔记

    对Series的理解也源于对其相关的代码操作,本次仅贴一些代码来加深理解以及记忆 import pandas as pd import numpy as np s = pd.Series(np.ran ...

  8. SAS学习笔记23 线性回归、多元回归

    线性回归 由样本资料计算的回归系数b和其他统计量一样,存在抽样误差,因此,需要对线性回归方程进行假设检验 1.方差分析 2.t检验 相关系数的假设检验 相关系数(correlation coeffic ...

  9. java之集合那些事

    集合概述: 集合和数组都可以保存多个对象,但是数组的长度不可变,集合可以保存数量变化的数据.java中的集合类主要由两个接口派生出,Collection和Map Collection接口和Iterat ...

  10. Session共享问题---理论

    随着网站访问量增加,初期的一台服务器已经完全不能支持业务,这个时候我们就需要增加服务器设备,来抗住请求的增量,如下所示: 负载均衡的目的本来就是要为了平均分配请求,所以没有固定第一次访问和第二次访问的 ...