【luoguP4777】【模板】扩展中国剩余定理(EXCRT)
(扩展)中国剩余定理
对于一组同余方程
\(x\equiv a_1(mod \quad n_1)\)
\(x\equiv a_2(mod \quad n_2)\)
\(x\equiv a_3(mod \ \ n_3)\)
\(x\equiv a_n(mod\ \ n_m)\)
对于第一个和第二个式子
则有:
\(x = a1 + k1*n1\)
\(x = a2 + k2*n2\)
就有:
\(a1 + k1 * n1 = a2 + k2 * n2\)
\(k1 * n1 - k2 * n2 = a2 - a1\)
故我们设 \(d = a_2 - a_1\) 再变化一下形式就有:
\(k_1 * n_1 + (-k_2) * n_2 = d\)
令 \(g = gcd(n_1,n_2)\)
这样我们就可以通过exgcd来求出一组解 x1,y1
满足 \(x_1 * n_1 + y_2 * n_2 = g\)
故: \(x_1∗d/g∗n_1+y_2∗d/g∗n_2=g∗d/g\)
则: \(k1=x1∗d/g,k2=y1∗d/g\)
从而得到一组通解
\(k1=k1+n2/g∗T\)
\(k2=k2−n1/g∗T\)
要使所求得的解最小且为正整数则可以根据 k1 的通解形式求得
\(k_1 = ( k_1 % ( n_2/g ) + n_2/g ) % ( n_2/g )\)
再带入 $x=a_1+k_1∗n_1 $得到 xx
令 A 为合并后的 a , N 为合并后的 n
**所以\(N=lcm(n_1,n_2)=n_1∗n_2/g\)
\(x==k_1*p_1+a_1 (mod \ \ lcm(n_1,n_2));\)
void exgcd(ll a,ll b,ll &g,ll &x,ll &y)
{
if (b == 0)
{
g = a;x = 1; y = 0;
return;
}
exgcd(b,a%b,g,y,x);
y-=(a/b)*x;
}
bool flag = false;
ll a1,a2,n1,n2;
ll abs(ll x) {return x>0?x:-x;}
void china()
{
ll d = a2 - a1;
ll g,x,y;
exgcd(n1,n2,g,x,y);
if (d % g == 0)
{
x = ((x*d/g)%(n2/g)+(n2/g))%(n2/g);
a1 = x*n1 + a1;
n1 = (n1*n2)/g;
}
else flag = true;
}
int n;
long long as[100001];
long long ps[100001];
ll exchina()
{
a1 = as[0];
n1 =ps[0];
for (ll i = 1;i<n;i++)
{
a2 = as[i];
n2 = ps[i];
china();
if (flag)
return -1;
}
return a1;
}
int main()
{
cin>>n;
flag = false;
for (ll i = 0;i<n;i++)
cin>>ps[i]>>as[i];
cout<<(long long)realchina()<<endl;
}
【luoguP4777】【模板】扩展中国剩余定理(EXCRT)的更多相关文章
- 扩展中国剩余定理 (exCRT) 的证明与练习
原文链接https://www.cnblogs.com/zhouzhendong/p/exCRT.html 扩展中国剩余定理 (exCRT) 的证明与练习 问题模型 给定同余方程组 $$\begin{ ...
- 中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结
中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300035 前置浅讲 前 ...
- 扩展中国剩余定理 (ExCRT)
扩展中国剩余定理 (ExCRT) 学习笔记 预姿势: 扩展中国剩余定理和中国剩余定理半毛钱关系都没有 问题: 求解线性同余方程组: \[ f(n)=\begin{cases} x\equiv a_1\ ...
- 扩展中国剩余定理(EXCRT)快速入门
问题 传送门 看到这个问题感觉很难??? 不用怕,往下看就好啦 假如你不会CRT也没关系 EXCRT大致思路 先考虑将方程组两两联立解开,如先解第一个与第二个,再用第一个与第二个的通解来解第三个... ...
- 扩展中国剩余定理 exCRT 学习笔记
前言 由于 \(\{\mathrm{CRT}\}\subseteq\{\mathrm{exCRT}\}\),而且 CRT 又太抽象了,所以直接学 exCRT 了. 摘自 huyufeifei 博客 这 ...
- P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...
- P4777 【模板】扩展中国剩余定理(EXCRT)&& EXCRT
EXCRT 不保证模数互质 \[\begin{cases} x \equiv b_1\ ({\rm mod}\ a_1) \\ x\equiv b_2\ ({\rm mod}\ a_2) \\ ... ...
- [Luogu P4777] 【模板】扩展中国剩余定理(EXCRT) (扩展中国剩余定理)
题面 传送门:洛咕 Solution 真*扩展中国剩余定理模板题.我怎么老是在做模板题啊 但是这题与之前不同的是不得不写龟速乘了. 还有两个重点 我们在求LCM的时候,记得先/gcd再去乘另外那个数, ...
- P4777 【模板】扩展中国剩余定理(EXCRT)
思路 中国剩余定理解决的是这样的问题 求x满足 \[ \begin{matrix}x \equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\\ \dots\\x\eq ...
- 扩展中国剩余定理(EXCRT)学习笔记
扩展中国剩余定理(EXCRT)学习笔记 用途 求解同余方程组 \(\begin{cases}x\equiv c_{1}\left( mod\ m_{1}\right) \\ x\equiv c_{2} ...
随机推荐
- Maven学习存档(2)——settings.xml配置
二.settings.xml配置 2.1 原文 <?xml version="1.0" encoding="UTF-8"?> <!-- Lic ...
- AX 2009中现有量画面修改
前端时间开发一个东西,需要在现有量画面增加一个字段 但是发现这个display方法写在任何数据源下面都不行,数据取的不对. 因为InventSum这个表只有所有维度都出来时才会有对应关联的invent ...
- Go 终端读写 && 文件读写、copy
终端读写 操作终端相关文件句柄常量 os.Stdin(standard):标准输入 os.Stdout:标准输出 os.Stderr:标准错误输出 标准输出 demo:直接输出和 判断之后输出的结果不 ...
- Eclipse 交叉编译环境
创建空工程 添加交叉编译环境 添加工程文件 如需修改交叉编译环境 Cross GCC:使用交叉编译命令编译,需要自己指定 MinGW GCC:使用make命令编译,需要有Makefile Make T ...
- Android NDK 学习之在C中抛出异常
本博客主要是在Ubuntu 下开发,且默认你已经安装了Eclipse,Android SDK, Android NDK, CDT插件. 在Eclipse中添加配置NDK,路径如下Eclipse-> ...
- cookie和session以及iOS cookie的查取
Cookie的工作原理 http是无状态的,这是什么意思呢?就是说,在没有cookie之前,你第一次访问这个页面和第二次访问这个页面, 服务器是不知道的,不知道前一次是你.那么问题来了,我怎么登录,登 ...
- laravel登录后其他页面拿不到登录信息
登录本来是用表单的,我自作聪明的使用ajax提交 public function login(Request $request){ $data = $request->input(); $dat ...
- 理解下所谓的ssh隧道
目录 一.含义 二.功能 三.Linux下应用的案例 参考文章 一.含义 client为了访问到server的服务,但是由于防火墙的阻拦,client没有办法通过正常访问来进行,这就用到了ssh隧道. ...
- RestFramework之注册器、响应器与分页器
一.注册器的说明与使用 在我们编写url时经常会因请求方式不同,而重复编写某条url,而rest_framework中的注册器帮我节省了很多代码 下面介绍一下如何使用 # 利用注册器来实现路由分发 f ...
- 记录一下JProfiler的使用
刚入职实习,第四天了,昨晚老大安排我在公司机器上装个JProfiler看一情况. 然后网上都是什么跟tomcat一起使用的,所以折腾了很久才搞出来. 我这里没用什么服务器,因为公司用的是Play!框架 ...