用途

在\(O(n\log^2 n)\)的时间内做诸如
\[
f_n=\sum_{i=0}^{n-1} f_ig_{n-i}
\]
或是
\[
f_n=\sum_{i=0}^{n-1} f_if_{n-i}
\]
或是
\[
f_{k,n}=\sum_s\sum_t \sum_i f_{s,i}f_{t,n-i}
\]
等“我 卷 我 自 己”的式子。

(如果你觉得这东西多项式求逆也可以做,那么请你认真看一下第三个式子)

思想

式子一

用CDQ分治的思想:先递归做出左边,考虑左边对右边的贡献,然后递归右边。

这其实就是最简单的分治FFT,用多项式求逆也可以实现。

式子二

现在\(g\)也被\(f\)替换了,考虑仍然用上面的做法,但你会发现:你挂了。

为什么会挂呢?

上面的统计贡献的过程是这样的:分治\([l,r]\)时,先做出\([l,mid]\)的\(f\),然后把\([l,mid]\)的\(f\)和\([1,r-l+1]\)的\(g\)卷在一起,把贡献算到\([mid+1,r]\)上面去。

但是现在发现一个漏洞:如果\(g\)替换成了\(f\),那么\([1,r-l+1]\)的\(f\)可能还没有被完全算出来。

什么时候会发生这种情况呢?考虑分治结构其实和线段树结构相同,满足左边的大小\(\ge\)右边的大小,所以只有在最左边的那个区间可能会发生这种事,也就是\(l=1\)时。

那怎么办?怎么提前算出右边?

我也不知道

既然不能提前算出来,那就不算,只算出\(f\)在\([l,mid]\)的值对右边的贡献之后直接往右边递归。

显然,一个点不能对自己产生贡献,所以递归到一个点的时候肯定是对的。

而两个点时可以算出\(l\)对\(r\)的贡献,也是对的。

以此类推,它就是对的。

(完全严谨的证明我也不会啊qwq)

注意:当\(l\ne 1\)时把\([l,mid]\)和\([1,r-l+1]\)卷起来时相当于钦定一个指针在\([l,mid]\),而另一个在\([1,r-l+1]\),但实际上他们有可能会交换位置,所以要乘2。

update:我都写了些啥……其实就是把两个卷起来的时候有两个指针,在右边的那个指针位置统计贡献,所以直接递归右边完全莫得问题。当卷积并不是二次方而是三次方、四次方的时候也照样可以在最右边的那个位置统计贡献。

式子三

这个式子真是丑呢……

然而直接用式子二的方法就可以了,方法并没有太大不同,除了……

注意:当\([l\ne 1]\)时¥%……&@&¥%¥,也相当于钦定了指针的位置,所以还要交换来一遍。

这么说可能比较难理解,考虑这么一个式子:
\[
f1_n=\sum_i f1_if2_{n-i}\\
f2_n=\sum_i f2_if1_{n-i}
\]
这时你不能简单地把\(f1[l,mid]\)和\(f2[1,r-l+1]\)卷起来,还要把\(f2[l,mid]\)和\(f1[1,r-l+1]\)卷起来,这才能做到不重不漏。

代码

代码现在不在我电脑上,我又那么懒,所以——

咕咕咕……

(建议去 https://www.cnblogs.com/yinwuxiao/p/9570533.html 食用代码/kel)

分治FFT学习笔记的更多相关文章

  1. 分治 FFT学习笔记

    先给一道luogu板子题:P4721 [模板]分治 FFT 今天模拟有道题的部分分做法是分治fft,于是就学了一下.感觉不是很难,国赛上如果推出式子的话应该能写出来. 分治fft用来解决这么一个式子\ ...

  2. 多项式求逆/分治FFT 学习笔记

    一.多项式求逆 给定一个多项式 \(F(x)\),请求出一个多项式 \(G(x)\), 满足 \(F(x) * G(x) \equiv 1 ( \mathrm{mod\:} x^n )\).系数对 \ ...

  3. 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)

    再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...

  4. 快速傅里叶变换(FFT)学习笔记

    定义 多项式 系数表示法 设\(A(x)\)表示一个\(n-1\)次多项式,则所有项的系数组成的\(n\)维向量\((a_0,a_1,a_2,\dots,a_{n-1})\)唯一确定了这个多项式. 即 ...

  5. 快速傅里叶变换(FFT)学习笔记(其一)

    再探快速傅里叶变换(FFT)学习笔记(其一) 目录 再探快速傅里叶变换(FFT)学习笔记(其一) 写在前面 为什么写这篇博客 一些约定 前置知识 多项式卷积 多项式的系数表达式和点值表达式 单位根及其 ...

  6. 快速傅里叶变换(FFT)学习笔记(其二)(NTT)

    再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 写在前面 一些约定 前置知识 同余类和剩余系 欧拉定理 阶 原根 求原根 NTT ...

  7. 口胡FFT现场(没准就听懂了)&&FFT学习笔记

    前言(不想听的可以跳到下面) OK.蒟蒻又来口胡了. 自从ZJOI2019上Day的数论课上的多项式听到懵逼了,所以我就下定决心要学好多项式.感觉自己以前学的多项式都是假的. 但是一直在咕咕,现在是中 ...

  8. 【笔记篇】(理论向)快速傅里叶变换(FFT)学习笔记w

    现在真是一碰电脑就很颓废啊... 于是早晨把电脑锁上然后在旁边啃了一节课多的算导, 把FFT的基本原理整明白了.. 但是我并不觉得自己能讲明白... Fast Fourier Transformati ...

  9. 【文文殿下】快速傅里叶变换(FFT)学习笔记

    多项式 定义 形如\(A(x)=\sum_{i=0}^{n-1} a_i x^i\)的式子称为多项式. 我们把\(n\)称为该多项式的次数界. 显然,一个\(n-1\)次多项式的次数界为\(n\). ...

随机推荐

  1. Codeforces Round #588 (Div. 1) 简要题解

    1. 1229A Marcin and Training Camp 大意: 给定$n$个对$(a_i,b_i)$, 要求选出一个集合, 使得不存在一个元素好于集合中其他所有元素. 若$a_i$的二进制 ...

  2. springboot 的启动流程

    1.我们springboot 项目的启动类如下. 方式1 @SpringBootApplicationpublic class SpringbootZkLockApplication { public ...

  3. C#使用任务并行库(TPL)

    TPL(Task Parallel Library) 任务并行库 (TPL) 是 System.Threading和 System.Threading.Tasks 命名空间中的一组公共类型和 API. ...

  4. RabbitMQ 应用二

    在应用一中,基本的消息队列使用已经完成了,在实际项目中,一定会出现各种各样的需求和问题,RabbitMQ内置的很多强大机制和功能会帮助我们解决很多的问题,下面就一个一个的一起学习一下. 消息响应机制 ...

  5. Python之Django

    一.Django是一个开放源代码的Web应用框架,由Python写成.采用了MTV的框架模式,即模型M,视图V和模版T.它最初是被开发来用于管理劳伦斯出版集团旗下的一些以新闻内容为主的网站的,即是CM ...

  6. 笔记 - C#从头开始构建编译器 - 1

    视频与PR:https://github.com/terrajobst/minsk/blob/master/docs/episode-01.md 作者是 Immo Landwerth(https:// ...

  7. Neo4J之标签类型

    Neo4J的标签可以理解一个类,在创建一个节点时可以设置一个或多个标签: 1. 标签名为中文(可以) CRATE(节点名:标签1:标签2{属性1:34} 创建了一个节点名为“节点名”的节点(不可以用节 ...

  8. mysql中常用的数据类型

    MySQL是一种关系数据库管理系统,关系数据库将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性.MySQL所使用的 SQL 语言是用于访问数据库的最常用标准化语 ...

  9. 解决JAVA连接Sybase数据库查询数据乱码的问题

    连接字符串加上charset=eucgb&jconnect_version=0例如:jdbc:sybase:Tds:server:port/database?charset=eucgb& ...

  10. 善用#waring,#pragma mark 标记

    在项目开发中,我们不可能对着需求一口气将代码都写好.开发过程中肯定遇到诸如需求变动,业务逻辑沟通,运行环境的切换等这些问题.当项目大的时候,如果木有形成统一的代码规范,在项目交接和开发人员沟通上将会带 ...