BZOJ5093 图的价值——推式子+第二类斯特林数
题解
题目等价于求这个式子
\]
有这么一个式子
k\\
j
\end{Bmatrix}j!\binom{i}{j}\]
代入可得
k\\
j
\end{Bmatrix}j!\binom{i}{j}\]
交换枚举顺序
k\\
j
\end{Bmatrix}j!\sum\limits_{i=j}^{n-1}\binom{n-1}{i}\binom{i}{j}\]
考虑到后面那个和号的组合意义为先在\(n-1\)个数中确定\(j\)个,剩下的可选可不选,即
k\\
j
\end{Bmatrix}j!\binom{n-1}{j}2^{n-1-j}
\]
k\\
j
\end{Bmatrix}\frac{(n-1)!}{(n-1-j)!}2^{n-1-j}\]
本题的\(n\)可能高达\(10^9\),但是发现当\(j>k\)时\(\begin{Bmatrix}
k\\
j
\end{Bmatrix}\)为\(0\),改一下求和上界
k\\
j
\end{Bmatrix}\frac{(n-1)!}{(n-1-j)!}2^{n-1-j}\]
第二类斯特林数可以直接卷积出来,总复杂度\(O(nlogn)\)
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <string>
#include <vector>
#include <cmath>
#include <ctime>
#include <queue>
#include <map>
#include <set>
using namespace std;
#define ull unsigned long long
#define pii pair<int, int>
#define uint unsigned int
#define mii map<int, int>
#define lbd lower_bound
#define ubd upper_bound
#define INF 0x3f3f3f3f
#define IINF 0x3f3f3f3f3f3f3f3fLL
#define DEF 0x8f8f8f8f
#define DDEF 0x8f8f8f8f8f8f8f8fLL
#define vi vector<int>
#define ll long long
#define mp make_pair
#define pb push_back
#define re register
#define il inline
#define N 1000000
#define MOD 998244353
int n, k;
int a[N+5], b[N+5], S[N+5], fac[N+5], facinv[N+5];
int fpow(int x, int p) {
int ret = 1;
while(p) {
if(p&1) ret = 1LL*ret*x%MOD;
x = 1LL*x*x%MOD;
p >>= 1;
}
return ret;
}
void bitReverse(int *s, int bit, int len) {
static int tmp[4*N+5];
tmp[0] = 0;
for(int i = 1; i < len; ++i) {
tmp[i] = (tmp[i>>1]>>1)|((i&1)<<(bit-1));
if(i < tmp[i]) swap(s[i], s[tmp[i]]);
}
}
void DFT(int *s, int bit, int len, int flag) {
bitReverse(s, bit, len);
for(int l = 1; l <= len; l <<= 1) {
int mid = l>>1, t = fpow(3, (MOD-1)/l);
if(flag) t = fpow(t, MOD-2);
for(int *p = s; p != s+len; p += l) {
int w = 1, x, y;
for(int i = 0; i < mid; ++i) {
x = p[i], y = 1LL*w*p[i+mid]%MOD;
p[i] = (x+y)%MOD;
p[i+mid] = (x-y)%MOD;
w = 1LL*w*t%MOD;
}
}
}
if(flag) {
int invlen = fpow(len, MOD-2);
for(int i = 0; i < len; ++i) s[i] = 1LL*s[i]*invlen%MOD;
}
}
int main() {
scanf("%d%d", &n, &k);
if(n == 1) {
printf("0\n");
return 0;
}
fac[0] = 1;
for(int i = 1; i <= k; ++i) fac[i] = 1LL*fac[i-1]*i%MOD;
facinv[k] = fpow(fac[k], MOD-2);
for(int i = k; i >= 1; --i) facinv[i-1] = 1LL*facinv[i]*i%MOD;
for(int i = 0; i <= k; ++i) {
a[i] = facinv[i];
if(i&1) a[i] *= -1;
b[i] = 1LL*fpow(i, k)*facinv[i]%MOD;
}
int bit = 0, len;
while((1<<bit) < 2*k+2) bit++;
len = (1<<bit);
DFT(a, bit, len, 0), DFT(b, bit, len, 0);
for(int i = 0; i < len; ++i) S[i] = 1LL*a[i]*b[i]%MOD;
DFT(S, bit, len, 1);
int ans = 0, lim = min(n-1, k), x = 1, y = fpow(2, n-1), t = fpow(2, MOD-2);
for(int i = 0; i <= lim; ++i) {
ans = (ans+1LL*S[i]*x%MOD*y%MOD)%MOD;
x = 1LL*x*(n-1-i)%MOD, y = 1LL*y*t%MOD;
}
if(n&1) ans = 1LL*n*fpow(fpow(2, (n-1)/2), n-2)%MOD*ans%MOD;
else ans = 1LL*n*fpow(fpow(2, (n-2)/2), n-1)%MOD*ans%MOD;
ans = (ans+MOD)%MOD;
printf("%d\n", ans);
return 0;
}
BZOJ5093 图的价值——推式子+第二类斯特林数的更多相关文章
- 【bzoj5093】[Lydsy1711月赛]图的价值(NTT+第二类斯特林数)
题意: 给定\(n\)个点,一个图的价值定义为所有点的度数的\(k\)次方之和. 现在计算所有\(n\)个点的简单无向图的价值之和. 思路: 将式子列出来: \[ \sum_{i=1}^n\sum_{ ...
- Codeforces 1528F - AmShZ Farm(转化+NTT+推式子+第二类斯特林数)
Codeforces 题目传送门 & 洛谷题目传送门 神仙题,只不过感觉有点强行二合一(?). 首先考虑什么样的数组 \(a\) 符合条件,我们考虑一个贪心的思想,我们从前到后遍历,对于每一个 ...
- 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)
[BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...
- BZOJ5093 [Lydsy1711月赛]图的价值 【第二类斯特林数 + NTT】
题目链接 BZOJ5093 题解 点之间是没有区别的,所以我们可以计算出一个点的所有贡献,然后乘上\(n\) 一个点可能向剩余的\(n - 1\)个点连边,那么就有 \[ans = 2^{{n - 1 ...
- bzoj5093:图的价值(第二类斯特林数+NTT)
传送门 首先,题目所求为\[n\times 2^{C_{n-1}^2}\sum_{i=0}^{n-1}C_{n-1}^ii^k\] 即对于每个点\(i\),枚举它的度数,然后计算方案.因为有\(n\) ...
- BZOJ 5093: [Lydsy1711月赛]图的价值 第二类斯特林数+NTT
定义有向图的价值为图中每一个点的度数的 \(k\) 次方之和. 求:对于 \(n\) 个点的无向图所有可能情况的图的价值之和. 遇到这种题,八成是每个点单独算贡献,然后累加起来. 我们可以枚举一个点的 ...
- bzoj 5093 [Lydsy1711月赛]图的价值 NTT+第二类斯特林数
[Lydsy1711月赛]图的价值 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 245 Solved: 128[Submit][Status][D ...
- bzoj 5093 图的价值 —— 第二类斯特林数+NTT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5093 每个点都是等价的,从点的贡献来看,得到式子: \( ans = n * \sum\li ...
- CF932E Team Work(第二类斯特林数)
传送门:CF原网 洛谷 题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$. $1\le n\le 10^9,1\le k ...
随机推荐
- codevs 1163:访问艺术馆
题目描述 Description 皮尔是一个出了名的盗画者,他经过数月的精心准备,打算到艺术馆盗画.艺术馆的结构,每条走廊要么分叉为二条走廊,要么通向一个展览室.皮尔知道每个展室里藏画的数量,并且他精 ...
- 编写一个自定义事件类,包含on/off/emit/once方法
function Event() { this._events = {}; } Event.prototype.on = function(type, fn) { if (!this._events[ ...
- 快速Get-JAVA-IO流
第四阶段 IO IO流 前言: 前面的学习我们只能够在已有的一定封闭范围内进行一些操作,但是这显然是无趣的,也是不支持我们实现一些复杂的需求,所以Java提供IO流这样一种概念,方便我们对数据进行操作 ...
- ArrayList集合详解
ArrayList 实现了List的接口,是长度可变的数组,空间是连续的 api默认提供了很多操作ArrayLis的方法,这些方法可以去api里面查询使用 一.这么多方法怎么学?1.熟练使用常见的方法 ...
- 1.2异常处理和服务配置、aop、日志、自定义事件处理
一.异常处理 2.1.数据验证 现在假设说要进行表单信息提交,肯定需要有一个表单,而后这个表单要将数据提交到 VO 类中,所以现在的基本实现如下: 1. 建立一个 Member.java 的 VO 类 ...
- multipart/form-data(二进制流) 两种传输方式
一.传统表单提交传输方式 <form id= "uploadForm" action= "url" method= "post" en ...
- 使用canal获取mysql的binlog传输给kafka,并交由logstash获取实验步骤
1. 实验环境 CPU:4 内存:8G ip:192.168.0.187 开启iptables防火墙 关闭selinux java >=1.5 使用yum方式安装的java,提前配置好JAVA_ ...
- jemeter鬓发压力测试包
使用: 为子线程添加响应时间:https://www.cnblogs.com/duanxz/p/5464993.html 结果查看分析:聚合报告在监听器里面: https://wenku.baidu. ...
- HTTP请求方式及其区别
一.请求方式 所有的请求都可以给服务器传递内容,也可以从服务器获取内容. GET:从服务器获取数据(给的少拿的多) POST:向服务器推送数据(给的多拿的少) DELETE:删除服务器的一些内容 PU ...
- 搭建nginx环境
1.安装nginx 下载地址:http://nginx.org/en/download.html 博主选择的是nginx1.8.1,点击下载 下载完成后是一个压缩包, 解压后双击nginx.exe 这 ...