区间dp 整数划分问题
整数划分(四)
- 描述
-
暑假来了,hrdv 又要留学校在参加ACM集训了,集训的生活非常Happy
(ps:你懂得),可是他最近遇到了一个难题,让他百思不得其解,他非常郁闷。。亲爱的你能帮帮他吗?
问题是我们经常见到的整数划分,给出两个整数 n , m ,要求在 n 中加入m - 1 个乘号,将n分成m段,求出这m段的最大乘积
- 输入
- 第一行是一个整数T,表示有T组测试数据
接下来T行,每行有两个正整数 n,m ( 1<= n < 10^19, 0 < m <= n的位数); - 输出
- 输出每组测试样例结果为一个整数占一行
- 样例输入
-
2
111 2
1111 2 - 样例输出
-
11
121 题目意思很简单 给定一个数 然后在这个数中间插入若干乘号 变成一个表达式 然后对求这个表达式和的最大值
做dp的题目 首先是要看如何定义一个问题以及如何把问题的规模变小 这里是对长度为n的数中插入k个乘号 那么我们把问题分解的话是不是可以考虑
乘号多的式子是可以从乘号小的式子转移过来但是没添加一个乘号就会把数变成两个部分 那么维护一个区间就需要两个向量
我们定义dp[i][j][k]表示i~j 中插入k个乘号之后表达式的最大值
但是这样定义显得有点繁琐 每次我们插入一个乘号以后,乘号前面的式子(待修改)
区间dp 整数划分问题的更多相关文章
- HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结
题意:给定一个字符串 输出回文子序列的个数 一个字符也算一个回文 很明显的区间dp 就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...
- SDUT3146:Integer division 2(整数划分区间dp)
题目:传送门 题目描述 This is a very simple problem, just like previous one. You are given a postive integer n ...
- 专题训练之区间DP
例题:以下例题部分的内容来自https://blog.csdn.net/my_sunshine26/article/details/77141398 一.石子合并问题 1.(NYOJ737)http: ...
- 区间DP小结 及例题分析:P1880 [NOI1995]石子合并,P1063 能量项链
区间类动态规划 一.基本概念 区间类动态规划是线性动态规划的拓展,它在分阶段划分问题时,与阶段中元素出现的顺序和由前一阶段的那些元素合并而来由很大的关系.例如状态f [ i ][ j ],它表示以已合 ...
- BZOJ1055: [HAOI2008]玩具取名[区间DP]
1055: [HAOI2008]玩具取名 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1588 Solved: 925[Submit][Statu ...
- 【BZOJ-1055】玩具取名 区间DP
1055: [HAOI2008]玩具取名 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1560 Solved: 907[Submit][Statu ...
- 整数划分问题-解法汇总(暂有DP-递归)
整数划分问题是一个锻炼组合数学,递归以及动态规划很好的例子,虽然问题看似简单,但是其中玄机万千,有人转化成为背包问题,有人用生成函数解,有人以此作为企业面试题目,可见这种问题的认可度还是很高的. 整数 ...
- 区间dp的典例
区间dp, 属于dp的一种,顾名思义,便是对区间处理的dp,其中石子归并,括号匹配,整数划分最为典型. (1)石子归并 dp三要素:阶段,状态,决策. 首先我们从第i堆石子到第j堆石子合并所花费的最小 ...
- 2016"百度之星" - 初赛(Astar Round2A) 1004 D Game 区间DP
D Game Problem Description 众所周知,度度熊喜欢的字符只有两个:B 和D. 今天,它发明了一个游戏:D游戏. 度度熊的英文并不是很高明,所以这里的D,没什么高深的含义,只 ...
随机推荐
- DIV盒子模型介绍 div用法
- Android__adb 命令大全
ADB 即 Android Debug Bridge,Android调试桥.ADB工作方式比较特殊,采用监听Socket TCP 端口的方式让IDE和Qemu通讯,默认情况下adb会daemon相关的 ...
- maven plugin
assembly plugin [Maven学习]maven-assembly-plugin的使用 https://www.cnblogs.com/f-zhao/p/6929814.html使用Mav ...
- matlab遍历文件夹下所有图片和遍历所有子文件夹下图片
做图像处理实验,经常需要遍历当前文件下所有图片.matlab当然很早就考虑了这个问题,库函数dir就是完成这个工作的.函数返回的是一个存放所有目录下文件信息的结构体,通过遍历结构体就可以达到访问所有文 ...
- vuex中的babel编译mapGetters/mapActions报错解决方法
vex使用...mapActions报错解决办法 vuex2增加了mapGetters和mapActions的方法,借助stage2的Object Rest Operator 所在通过 methods ...
- JDK8记FullGC时候Metaspace内存不会被垃圾回收
本文链接:https://blog.csdn.net/a15939557197/article/details/90635460背景前段时间有一个这样的需求:第三方调用接口,30分钟内调用120W次: ...
- 成功解决Developer Express和Janus WinForms Controls中控件的冲突
最新在做一套GIS系统的框架,其中用到了Janus WinForms Controls和Developer Express这两个插件. 我用DE的xtraTabbedMdiManager组件来管理我的 ...
- 问题root@localhost's password:localhost:permission denied,please try again
转载:https://www.cnblogs.com/hmy-blog/p/6500909.html 经过试验,上述方法在我的电脑中没有成功. 1.安装 open ssh:sudo apt-get i ...
- UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb9 in position 16: invalid start byte
读取一个csv文件失败,提示: UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb9 in position 16: invalid sta ...
- 安装php的sphinx扩展模块
转自 http://blog.csdn.net/fenglailea/article/details/38115821 首先你必须已经安装过了sphinx 如何安装sphinx请看:http://bl ...