在网上看到关于排序学习的早期文章,这两篇文章大致都使用了Random Forest和Boosting方法。

一.paper

1.Web-Search Ranking with Initialized Gradient Boosted Regression Trees,2011

主要将Random Forests(RF)和Gradient Boosted Regression Trees(GBRT)做了一个sequence的combine.他们用RF得到了非常不错的效果,甚至比GBRT还要好。他们最后所用的方法是先用RF学习一个ranking function, 用这个ranking function的输出去初始化GBRT,做一个sequence 的combine, combine的结果要比他们单独的结果都要好。他们最后分析也认为,分类能比回归得到更好的效果,这个结论和[7]相同,很值得尝试。从他们的结果看,RF和GBRT的combine还是很有意义的,RF的一些优点在最后的model中都有体现,比如对parameter choice不敏感,不容易过拟合等。RF和GBRT的combine也解决了一个GBRT的缺点,因为GBRT是一个gradient boosting的方法,这一类方法存在一个trade-off, 就是step size和迭代轮数之间。如果要达到真正的global minimum, step size就必须很小,迭代轮数就必须增大,通过与RF的combine,对这个问题有所缓解,RF给了GBRT一个接近终点的start point, 这样即使step size比较小,也能比较快的结束迭代。

(1).rf

(2).gbrt

(3).使用rf初始化gbrt

2.Generalized BROOF-L2R: A General Framework for Learning to Rank Based on Boosting and Random Forests,2016

这篇文章的作者来自巴西的University Federal of Minas Gerais。文章的核心思想非常直观,就是要把Boosting和Random Forest(RF)结合起来做Learning to Rank。有这样想法的人过去也有不少,已经有了很多类似思路。这篇文章的思路是使用RF来做Weak Learner,然后用Boosting的想法把这些Weak Learner串起来。

当然,文章不是仅仅限于这么一个简单的思路,而是提出了一个叫BROOF的框架,很多算法的变种都可以在这个框架里实现。比如Weak Learner的Weight如何确定,是否选择使用Validation Set等,有兴趣的读者可以去看看文章的细节。

文章比较了提出的框架和很多知名算法的性能,比如AdaRank、LambdaRank、RankSVM等等。选用的数据集是LETOR 2003、2004和Yahoo Learning to Rank数据集。结果还是比较引人注目的,基本上在所有的数据集上,提出的算法性能不是最好,就是和最好的算法持平。

这篇文章的另外一个亮点是Related Work,对于Boosting或者RF在Learning to Rank里的应用有兴趣的读者,建议好好看看Related Work里的文献。

---------------------
原文:http://www.cnblogs.com/zjgtan/p/3652689.html
原文:https://blog.csdn.net/heyc861221/article/details/80127850

两篇将rf和boosting方法用在搜索排序上的paper的更多相关文章

  1. 以Random Forests和AdaBoost为例介绍下bagging和boosting方法

    我们学过决策树.朴素贝叶斯.SVM.K近邻等分类器算法,他们各有优缺点:自然的,我们可以将这些分类器组合起来成为一个性能更好的分类器,这种组合结果被称为 集成方法 (ensemble method)或 ...

  2. javamail模拟邮箱功能发送电子邮件-中级实战篇【新增附件发送方法】(javamail API电子邮件实例)

    引言: JavaMail jar包下载地址:http://java.sun.com/products/javamail/downloads/index.html 此篇是紧随上篇文章而封装出来的,阅读本 ...

  3. 《转载-两篇很好的文章整合》Android中自定义控件

    两篇很好的文章,有相互借鉴的地方,整合到一起收藏 分别转载自:http://blog.csdn.net/xu_fu/article/details/7829721 http://www.cnblogs ...

  4. 网易云安全两篇论文入选计算机视觉顶级会议ICCV

    本文由  网易云发布. 10月22日至29日,全球计算机视觉顶尖专家们共聚威尼斯,参加ICCV2017国际计算机视觉大会,就领域内最新成果展开集中研讨,大会论文集也代表了计算机视觉领域最新的发展方向和 ...

  5. 两篇文章带你走入.NET Core 世界:CentOS+Kestrel+Ngnix 虚拟机先走一遍(一)

    背景: 上一篇:ASP.Net Core on Linux (CentOS7)共享第三方依赖库部署 已经交待了背景,这篇就省下背景了. 折腾的过程分两步: 第一步是:本机跑虚拟机部署试一下: 第二步是 ...

  6. javamail模拟邮箱功能获取邮件内容-中级实战篇【内容|附件下载方法】(javamail API电子邮件实例)

    引言: JavaMail jar包下载地址:http://java.sun.com/products/javamail/downloads/index.html 此篇是紧随上篇文章而封装出来的,阅读本 ...

  7. 小白两篇博客熟练操作MySQL 之 第一篇

    小白两篇博客熟悉操作MySQL  之   第一篇 一.概述 1. 什么是数据库? 答: 储存数据的仓库, 如: 在ATM的事例中创建的一个db 目录, 称为数据库 2. 什么是Mysql, Oracl ...

  8. 两篇论文之CNN中正交操作

    CNN的权值正交性和特征正交性,在一定程度上是和特征表达的差异性存在一定联系的. 下面两篇论文,一篇是在训练中对权值添加正交正则提高训练稳定性,一篇是对特征添加正交性的损失抑制过拟合. 第一篇:Ort ...

  9. 【进阶之路】Redis基础知识两篇就满足(二)

    导言 大家好,我是南橘,一名练习时常两年半的java练习生,这是我在博客园的第二篇文章,当然,都是要从别处搬运过来的,不过以后新的文章也会在博客园同步发布,希望大家能多多支持^_^ 这篇文章的出现,首 ...

随机推荐

  1. phpexcel 生成大于26列数据

    function excelExport2($fileName = '', $headArr = [], $data = [], $widths=[]) { ob_clean(); // $fileN ...

  2. Codeforces 1237C2. Balanced Removals (Harder)

    传送门 先来考虑一下二维时的情况,那么对于 $x$ 相同的点,我们按 $y$ 排序,然后相邻的一对对消除 最后 $x$ 坐标相同的点最多剩下一个,那么此时所有点的 $x$ 坐标都不一样 再按 $x$ ...

  3. 交替方向乘子法(ADMM)的原理和流程的白话总结

    交替方向乘子法(ADMM)的原理和流程的白话总结 2018年08月27日 14:26:42 qauchangqingwei 阅读数 19925更多 分类专栏: 图像处理   作者:大大大的v链接:ht ...

  4. C语言中signed和unsigned理解

    一直在学java,今天开始研究ACM的算法题,需要用到C语言,发现好多知识点都不清楚了,看来以后要多多总结~ signed意思为有符号的,也就是第一个位代表正负,剩余的代表大小,例如:signed i ...

  5. 【原创】大叔经验分享(66)docker启动tomcat不输出catalina.out

    docker启动tomcat默认是: Run the default Tomcat server (CMD ["catalina.sh", "run"]): 查 ...

  6. Http请求头缓存设置方法

    1.直接在.aspx页面中设置最直接的,在.aspx页面中添加一行如下代码: <%@ OutputCache Duration="3600" VaryByParam=&quo ...

  7. 使用WSAIoctl获取AcceptEx,Connectex,Getacceptexsockaddrs函数指针

    运行WinNT和Win2000的系统上,这些APIs在Microsoft提供的DLL(mswsock.dll)里实现,可以通过链接mswsock.lib或者通过WSAioctl的SIO_GET_EXT ...

  8. warning LNK4076: 无效的增量状态文件“../×××.ilk”;正在非增量链接

      VS编译警告:warning LNK4076: 无效的增量状态文件“../×××.ilk”;正在非增量链接 解决方法:删除程序提示的输出目录的×××.ilk,重新编译,即可

  9. O061、Boot from Volume

    参考https://www.cnblogs.com/CloudMan6/p/5679384.html   Volume 除了可以用作Instance的数据盘,也可以作为启动盘(Bootable Vol ...

  10. ui组件库

    基于Vue的Quasar Framework 中文网 http://www.quasarchs.com/ quasarframework/quasar: Quasar Frameworkhttps:/ ...