[HNOI2009]最小圈 分数规划 spfa判负环

题面

思路难,代码简单。

题目求圈上最小平均值,问题可看为一个0/1规划问题,每个边有\(a[i],b[i]\)两个属性,\(a[i]=w(u,v),b[i]=1\),问题转化为\(min(\frac{\sum^{k}_{i=1}a[i]}{\sum^{k}_{j=1}b[j]})\)

分数规划考虑二分答案,当前\(mid\)可能为答案当且仅当:

\[\frac{\sum^{k}_{i=1}a[i]}{\sum^{k}_{j=1}b[j]} < mid
\]

化简即为判定:

\[\sum{}^{k}_{i=1} (a[i]-mid)<0
\]

每次二分答案时,将图中所有边权\(a[i]​\)视为\(a[i]-mid​\),此时问题转换为一个\(spfa​\)判负环问题,考虑使用\(dfs​\)优化的\(spfa​\)

AC Code:

#include <cstdio>
#include <cstring>
#define MAXN 3003
#define MAXM 10010
using namespace std;
int head[MAXN],nxt[MAXM],vv[MAXM],tot;
double ww[MAXM];
inline void add_edge(int u, int v, double w){
vv[++tot]=v;
ww[tot]=w;
nxt[tot]=head[u];
head[u]=tot;
}
double dis[MAXN];
bool vis[MAXN];
bool spfa(int u, double mid){
vis[u]=1;
for(register int i=head[u];i;i=nxt[i]){
int v=vv[i];double w=ww[i]-mid;
if(dis[v]>dis[u]+w){
dis[v]=dis[u]+w;
if(vis[v]) return 1;
if(spfa(v,mid)) return 1;
}
}
vis[u]=0;
return 0;
}
inline int read()
{
int s=0,f=1;
char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-')f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){s=(s<<3)+(s<<1)+ch-'0';ch=getchar();}
return s*f;
}
int n,m;
int main()
{
n=read(),m=read();
while(m--){
int a,b;double w;a=read(),b=read();scanf("%lf", &w);
add_edge(a,b,w);
}
double l=-1e7,r=1e7,mid;
while(r-l>1e-10){
mid=(l+r)/2;
memset(dis, 0, sizeof(dis));
memset(vis, 0, sizeof(vis));
bool isOK=0;
for(register int i=1;i<=n;++i)
if(spfa(i,mid)){
isOK=1;break;
}
if(isOK) r=mid;
else l=mid;
}
printf("%.8lf", mid);
return 0;
}

[HNOI2009]最小圈 分数规划 spfa判负环的更多相关文章

  1. 【BZOJ1486】【HNOI2009】最小圈 分数规划 dfs判负环。

    链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...

  2. 【bzoj1486】[HNOI2009]最小圈 分数规划+Spfa

    题目描述 样例输入 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 样例输出 3.66666667 题解 分数规划+Spfa判负环 二分答案mid,并将所有边权减去mid,然后再判 ...

  3. 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)

    传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...

  4. [P1768]天路(分数规划+SPFA判负环)

    题目描述 “那是一条神奇的天路诶~,把第一个神犇送上天堂~”,XDM先生唱着这首“亲切”的歌曲,一道猥琐题目的灵感在脑中出现了. 和C_SUNSHINE大神商量后,这道猥琐的题目终于出现在本次试题上了 ...

  5. [bzoj1486][HNOI2009]最小圈——分数规划+spfa+负环

    题目 传送门 题解 这个题是一个经典的分数规划问题. 把题目形式化地表示,就是 \[Minimize\ \lambda = \frac{\sum W_{i, i+1}}{k}\] 整理一下,就是 \[ ...

  6. bzoj1690:[Usaco2007 Dec]奶牛的旅行(分数规划+spfa判负环)

    PS:此题数组名皆引用:戳我 题目大意:有n个点m条有向边的图,边上有花费,点上有收益,点可以多次经过,但是收益不叠加,边也可以多次经过,但是费用叠加.求一个环使得收益和/花费和最大,输出这个比值. ...

  7. [HNOI2009]最小圈(分数规划+SPFA判负环)

    题解:求环长比环边个数的最小值,即求min{Σw[i]/|S|},其中i∈S.这题一眼二分,然后可以把边的个数进行转化,假设存在Σw[i]/|S|<=k,则Σw[i]-k|S|<=0,即Σ ...

  8. 【HNOI2009】最小圈 题解(SPFA判负环+二分答案)

    前言:模拟赛考试题,不会做,写了个爆搜滚蛋仍然保龄. --------------------- 题目链接 题目大意:给定一张有向图,求一个环,使得这个环的长度与这个环的大小(所含结点个数)的比值最小 ...

  9. bzoj 1690: [Usaco2007 Dec]奶牛的旅行——分数规划+spfa判负环

    Description 作为对奶牛们辛勤工作的回报,Farmer John决定带她们去附近的大城市玩一天.旅行的前夜,奶牛们在兴奋地讨论如何最好地享受这难得的闲暇. 很幸运地,奶牛们找到了一张详细的城 ...

随机推荐

  1. uboot-的start.S详细注解及分析

    原文地址:uboot-的start.S详细注解及分析 作者:zhouyg11 大多数bootloader都分为stage1和stage2两部分,u-boot也不例外.依赖于CPU体系结构的代码(如设备 ...

  2. 2020年AI、CV、NLP顶会最全时间表

    2020年AI.CV.NLP顶会最全时间表 2019-09-01 14:04:19 weixin_38753768 阅读数 40   2020 AI.CV.NLP主流会议时间表,包含会议举办的时间.地 ...

  3. IMPDPORA-27046,dump文件损坏

    客户提出导入报错 一.报错如下 SYMPTOMS DataPump Import (IMPDP) fails with the following errors: ORA-: invalid oper ...

  4. (一)Centos之VMware虚拟机安装

    一.下载 64位的VM12 安装包: http://pan.baidu.com/s/1bpzoXQZ 二.安装 点击下一步: 老规矩,打勾,下一步: 这里我们新建一个文件夹 VM12 最好放在D盘或者 ...

  5. eventFlow 系列 <三> 查询所有

    接着上面的例子,产生2条数据.怎么把这两条数据查询出来呢? var commandBus = resolver.Resolve<ICommandBus>(); , ); var execu ...

  6. [JZOJ5897]密匙--哈希骚操作

    [JZOJ5897]密匙--哈希骚操作 题目链接 太懒了自行Google 前置技能 二分/倍增求LCP e.g TJOI2017DNA 分析 这题看了样例解释才知道什么意思 本以为自己身为mo法师蛤希 ...

  7. elementUI动态数据表格(带分页)

    index.vue <template> <div> <el-table ref="multipleTable" :data="tableD ...

  8. 三角形示例(兼容IE6)

    html代码: <!--三角形的绘制--> <div class="sanjiao"></div> css代码: .sanjiao{ width ...

  9. Centos7 配置 svn服务端

    转载至:Linux(阿里云Centos7)环境下搭建svn服务器以及权限配置详细步骤 本篇文章主要介绍在CentOS7中采用yum安装方式.优点:简单,一键安装,不用手动配置环境变量等.缺点:安装位置 ...

  10. How to find Oracle EBS Weblogic Server Admin Port and URL

    How to find Oracle EBS Weblogic Server Admin Port and URL   Weblogic admin portMethod 1 Open the App ...