ranch

整体理解

从整体上的话,ranch主要是三层的监控树

  • 第一层 ranch_sup,负责整个应用的启动,启动了ranch_server进程,它管理了整个应用的配置和连接数据
  • 第二层 ranch_listener_sup,负责连接的管理
  • 第三层 ranch_conns_sup和ranch_acceptors_sup,这两个分别用来处理新的连接和获得新的连接

    当然最底层的ranch_acceptor是应用中的重要角色,每当有新的连接,都会把控制权交给ranch_conns_sup,由它统一管理

ranch.app

启动模块为ranch_app,说明需要找到ranch_app.erl文件去启动应用

ranch_app.erl

根据参数启动测试的功能,主要启动了一个ranch_sup监控进程

ranch_sup.erl

新建一个名为ranch_server的ets表,同时启动并监控ranch_server进程,策略为one_for_one

ranch_server.erl

启动了一个进程,管理ranch_server这个ets表,提供多个接口

set_new_listener_opts:设置监听进程的参数

set_connections_sup:增加新的连接进程的监控进程Pid,并且对该进程进行monitor监视,把{MonitorRef, Pid}添加到#state.monitors中

set_listener_sup:增加一个监听进程的监控进程Pid,并且对该进程进行monitor监视,并且把{MonitorRef, Pid}添加到#state.monitors中

set_addr:在ets中记录地址

set_max_conns:设置最大连接数量

set_trans_opts:设置传输协议参数

set_proto_opts:设置协议参数

到此为止,ranch应用的准备工作已经结束,剩下的就差外部的调用了


ranch.erl

ranch应用的调用模块,通过start_listener/6来初始化ranch的功能模块,给它提供功能参数,其中有一个Transport参数,是ranch的协议模块名,要么是ranch_ssl,要么就是ranch_tcp,先在ranch_sup下面启动了一个ranch_listener_sup进程,该进程做了什么,接下来将详细介绍,至少在这里我们知道,ranch的正式使用由ranch_listener_sup进程启动开始。

-spec start_listener(ref(), module(), any(), module(), any())
-> supervisor:startchild_ret().
start_listener(Ref, Transport, TransOpts, Protocol, ProtoOpts) ->
NumAcceptors = proplists:get_value(num_acceptors, TransOpts, 10),
start_listener(Ref, NumAcceptors, Transport, TransOpts, Protocol, ProtoOpts). -spec start_listener(ref(), non_neg_integer(), module(), any(), module(), any())
-> supervisor:startchild_ret().
start_listener(Ref, NumAcceptors, Transport, TransOpts, Protocol, ProtoOpts)
when is_integer(NumAcceptors) andalso is_atom(Transport)
andalso is_atom(Protocol) ->
_ = code:ensure_loaded(Transport),
case erlang:function_exported(Transport, name, 0) of
false ->
{error, badarg};
true ->
Res = supervisor:start_child(ranch_sup, child_spec(Ref, NumAcceptors,
Transport, TransOpts, Protocol, ProtoOpts)),
Socket = proplists:get_value(socket, TransOpts),
case Res of
{ok, Pid} when Socket =/= undefined ->
%% Give ownership of the socket to ranch_acceptors_sup
%% to make sure the socket stays open as long as the
%% listener is alive. If the socket closes however there
%% will be no way to recover because we don't know how
%% to open it again.
Children = supervisor:which_children(Pid),
{_, AcceptorsSup, _, _}
= lists:keyfind(ranch_acceptors_sup, 1, Children),
%%% Note: the catch is here because SSL crashes when you change
%%% the controlling process of a listen socket because of a bug.
%%% The bug will be fixed in R16.
catch Transport:controlling_process(Socket, AcceptorsSup);
_ ->
ok
end,
maybe_started(Res)
end.
-spec child_spec(ref(), module(), any(), module(), any())
-> supervisor:child_spec().
child_spec(Ref, Transport, TransOpts, Protocol, ProtoOpts) ->
NumAcceptors = proplists:get_value(num_acceptors, TransOpts, 10),
child_spec(Ref, NumAcceptors, Transport, TransOpts, Protocol, ProtoOpts). -spec child_spec(ref(), non_neg_integer(), module(), any(), module(), any())
-> supervisor:child_spec().
child_spec(Ref, NumAcceptors, Transport, TransOpts, Protocol, ProtoOpts)
when is_integer(NumAcceptors) andalso is_atom(Transport)
andalso is_atom(Protocol) ->
{{ranch_listener_sup, Ref}, {ranch_listener_sup, start_link, [
Ref, NumAcceptors, Transport, TransOpts, Protocol, ProtoOpts
]}, permanent, infinity, supervisor, [ranch_listener_sup]}.

ranch_listener_sup.erl

该监控进程启动时,主动调用ranch_server:set_listener_sup/2,将自己的信息记录在ets中并且被ranch_server监控,它下面还顺序启动了ranch_conns_sup和ranch_acceptors_sup,策略是rest_for_one,因为ranch_conns_sup是负责监控连接的进程,而ranch_acceptors_sup是监控消息的进程,ranch_conns_sup死掉之后,说明连接都断开了,ranch_acceptors_sup下面的进程也就无法运行,必须等ranch_conns_sup重启成功后才能正常工作。

ranch_conns_sup.erl

该模块并不是supervisor行为,不过作者手动写了一个类似supervisor的东西,启动时主动调用ranch_server:set_connections_sup/2记录自身的信息,同时通过ranch_server获取相应的一些连接参数,其中用到了proc_lib:init_ack/2用于响应proc_lib:start_link/3,实现同步启动进程,做到和gen_server一样的效果,接着开始一个循环函数loop/4,用来处理消息,下面列出主要的消息处理

{?MODULE, start_protocol, T, Socket}:参数中To为ranch_acceptor模块的进程pid,而Socket是ranch_acceptor接收到的客户端socket,启动一个调用Protocol:start_link/4启动一个进程,这个Protocol是用户实现的回调模块,通常是socket消息的接收处理进程,就像例子中的echo_protocol.erl或者reverse_protocol.erl这两个部分,如果启动成功,将会调用shoot/8来修改回调模块的Socket的控制进程,即socket的消息将发送到哪个进程在这里决定,修改之后,将回复回调部分进程一个{shoot, Ref, Transport, Socket, AckTimeout}消息,接着检查当前连接数量是否达到配置中的MaxConns,如果达到了最大连接数的话则把连接加入到等待连接列表中,同时增加子连接数量,继续循环loop/4

{?MODULE, active_connections, To, Tag}:To连接进程获取当前连接列表

{remove_connection, Ref, Pid}:移除某个连接进程

-spec init(pid(), ranch:ref(), module(), module()) -> no_return().
init(Parent, Ref, Transport, Protocol) ->
process_flag(trap_exit, true),
ok = ranch_server:set_connections_sup(Ref, self()),
MaxConns = ranch_server:get_max_connections(Ref),
TransOpts = ranch_server:get_transport_options(Ref),
ConnType = proplists:get_value(connection_type, TransOpts, worker),
Shutdown = proplists:get_value(shutdown, TransOpts, 5000),
AckTimeout = proplists:get_value(ack_timeout, TransOpts, 5000),
ProtoOpts = ranch_server:get_protocol_options(Ref),
ok = proc_lib:init_ack(Parent, {ok, self()}),
loop(#state{parent=Parent, ref=Ref, conn_type=ConnType,
shutdown=Shutdown, transport=Transport, protocol=Protocol,
opts=ProtoOpts, ack_timeout=AckTimeout, max_conns=MaxConns}, 0, 0, []).
loop(State=#state{parent=Parent, ref=Ref, conn_type=ConnType,
transport=Transport, protocol=Protocol, opts=Opts,
max_conns=MaxConns}, CurConns, NbChildren, Sleepers) ->
receive
{?MODULE, start_protocol, To, Socket} ->
try Protocol:start_link(Ref, Socket, Transport, Opts) of
{ok, Pid} ->
shoot(State, CurConns, NbChildren, Sleepers, To, Socket, Pid, Pid);
{ok, SupPid, ProtocolPid} when ConnType =:= supervisor ->
shoot(State, CurConns, NbChildren, Sleepers, To, Socket, SupPid, ProtocolPid);
Ret ->
To ! self(),
error_logger:error_msg(
"Ranch listener ~p connection process start failure; "
"~p:start_link/4 returned: ~999999p~n",
[Ref, Protocol, Ret]),
Transport:close(Socket),
loop(State, CurConns, NbChildren, Sleepers)
catch Class:Reason ->
To ! self(),
error_logger:error_msg(
"Ranch listener ~p connection process start failure; "
"~p:start_link/4 crashed with reason: ~p:~999999p~n",
[Ref, Protocol, Class, Reason]),
loop(State, CurConns, NbChildren, Sleepers)
end;
{?MODULE, active_connections, To, Tag} ->
To ! {Tag, CurConns},
loop(State, CurConns, NbChildren, Sleepers);
%% Remove a connection from the count of connections.
{remove_connection, Ref, Pid} ->
case put(Pid, removed) of
active ->
loop(State, CurConns - 1, NbChildren, Sleepers);
remove ->
loop(State, CurConns, NbChildren, Sleepers);
undefined ->
_ = erase(Pid),
loop(State, CurConns, NbChildren, Sleepers)
end;
%% Upgrade the max number of connections allowed concurrently.
%% We resume all sleeping acceptors if this number increases.
{set_max_conns, MaxConns2} when MaxConns2 > MaxConns ->
_ = [To ! self() || To <- Sleepers],
loop(State#state{max_conns=MaxConns2},
CurConns, NbChildren, []);
{set_max_conns, MaxConns2} ->
loop(State#state{max_conns=MaxConns2},
CurConns, NbChildren, Sleepers);
%% Upgrade the protocol options.
{set_opts, Opts2} ->
loop(State#state{opts=Opts2},
CurConns, NbChildren, Sleepers);
{'EXIT', Parent, Reason} ->
terminate(State, Reason, NbChildren);
{'EXIT', Pid, Reason} when Sleepers =:= [] ->
case erase(Pid) of
active ->
report_error(Ref, Protocol, Pid, Reason),
loop(State, CurConns - 1, NbChildren - 1, Sleepers);
removed ->
report_error(Ref, Protocol, Pid, Reason),
loop(State, CurConns, NbChildren - 1, Sleepers);
undefined ->
loop(State, CurConns, NbChildren, Sleepers)
end;
%% Resume a sleeping acceptor if needed.
{'EXIT', Pid, Reason} ->
case erase(Pid) of
active when CurConns > MaxConns ->
report_error(Ref, Protocol, Pid, Reason),
loop(State, CurConns - 1, NbChildren - 1, Sleepers);
active ->
report_error(Ref, Protocol, Pid, Reason),
[To|Sleepers2] = Sleepers,
To ! self(),
loop(State, CurConns - 1, NbChildren - 1, Sleepers2);
removed ->
report_error(Ref, Protocol, Pid, Reason),
loop(State, CurConns, NbChildren - 1, Sleepers);
undefined ->
loop(State, CurConns, NbChildren, Sleepers)
end;
{system, From, Request} ->
sys:handle_system_msg(Request, From, Parent, ?MODULE, [],
{State, CurConns, NbChildren, Sleepers});
%% Calls from the supervisor module.
{'$gen_call', {To, Tag}, which_children} ->
Children = [{Protocol, Pid, ConnType, [Protocol]}
|| {Pid, Type} <- get(),
Type =:= active orelse Type =:= removed],
To ! {Tag, Children},
loop(State, CurConns, NbChildren, Sleepers);
{'$gen_call', {To, Tag}, count_children} ->
Counts = case ConnType of
worker -> [{supervisors, 0}, {workers, NbChildren}];
supervisor -> [{supervisors, NbChildren}, {workers, 0}]
end,
Counts2 = [{specs, 1}, {active, NbChildren}|Counts],
To ! {Tag, Counts2},
loop(State, CurConns, NbChildren, Sleepers);
{'$gen_call', {To, Tag}, _} ->
To ! {Tag, {error, ?MODULE}},
loop(State, CurConns, NbChildren, Sleepers);
Msg ->
error_logger:error_msg(
"Ranch listener ~p received unexpected message ~p~n",
[Ref, Msg]),
loop(State, CurConns, NbChildren, Sleepers)
end.
shoot(State=#state{ref=Ref, transport=Transport, ack_timeout=AckTimeout, max_conns=MaxConns},
CurConns, NbChildren, Sleepers, To, Socket, SupPid, ProtocolPid) ->
case Transport:controlling_process(Socket, ProtocolPid) of
ok ->
ProtocolPid ! {shoot, Ref, Transport, Socket, AckTimeout},
put(SupPid, active),
CurConns2 = CurConns + 1,
if CurConns2 < MaxConns ->
To ! self(),
loop(State, CurConns2, NbChildren + 1, Sleepers);
true ->
loop(State, CurConns2, NbChildren + 1, [To|Sleepers])
end;
{error, _} ->
Transport:close(Socket),
%% Only kill the supervised pid, because the connection's pid,
%% when different, is supposed to be sitting under it and linked.
exit(SupPid, kill),
To ! self(),
loop(State, CurConns, NbChildren, Sleepers)
end.

ranch_acceptors_sup.erl

从ranch_server中获取ranch_conns_sup的进程,并且获取监听参数TransOpts,如果ranch_server中尚未有监听socket,则启动监听socket,接着把监听socket记录到ranch_server中,启动一个ranch_acceptor子进程。

ranch_acceptor.erl

启动一个loop/3循环,当接收到客户端的socket之后,把socket的控制进程改为连接监控进程ranch_conns_sup,连接监控进程中有对应的一些消息处理,接着调用ranch_conns_sup:start_protocol/2发送{?MODULE, start_protocol, self(), Socket},ranch_conns_sup进程自身对该消息进行处理,详情看ranch_conns_sup.erl的介绍,至此,ranch的监听端口的工作都已经准备完毕,(发现还有部分忽略了,需要实现ranch_protocol行为才能处理客户端消息的)现在就差客户端的连接进来了。

-spec loop(inet:socket(), module(), pid()) -> no_return().
loop(LSocket, Transport, ConnsSup) ->
_ = case Transport:accept(LSocket, infinity) of
{ok, CSocket} ->
case Transport:controlling_process(CSocket, ConnsSup) of
ok ->
%% This call will not return until process has been started
%% AND we are below the maximum number of connections.
ranch_conns_sup:start_protocol(ConnsSup, CSocket);
{error, _} ->
Transport:close(CSocket)
end;
%% Reduce the accept rate if we run out of file descriptors.
%% We can't accept anymore anyway, so we might as well wait
%% a little for the situation to resolve itself.
{error, emfile} ->
error_logger:warning_msg("Ranch acceptor reducing accept rate: out of file descriptors~n"),
receive after 100 -> ok end;
%% We want to crash if the listening socket got closed.
{error, Reason} when Reason =/= closed ->
ok
end,
flush(),
?MODULE:loop(LSocket, Transport, ConnsSup).

ranch源码阅读的更多相关文章

  1. 【原】FMDB源码阅读(三)

    [原]FMDB源码阅读(三) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 FMDB比较优秀的地方就在于对多线程的处理.所以这一篇主要是研究FMDB的多线程处理的实现.而 ...

  2. 【原】FMDB源码阅读(二)

    [原]FMDB源码阅读(二) 本文转载请注明出处 -- polobymulberry-博客园 1. 前言 上一篇只是简单地过了一下FMDB一个简单例子的基本流程,并没有涉及到FMDB的所有方方面面,比 ...

  3. 【原】FMDB源码阅读(一)

    [原]FMDB源码阅读(一) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 说实话,之前的SDWebImage和AFNetworking这两个组件我还是使用过的,但是对于 ...

  4. 【原】AFNetworking源码阅读(六)

    [原]AFNetworking源码阅读(六) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这一篇的想讲的,一个就是分析一下AFSecurityPolicy文件,看看AF ...

  5. 【原】AFNetworking源码阅读(五)

    [原]AFNetworking源码阅读(五) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 上一篇中提及到了Multipart Request的构建方法- [AFHTTP ...

  6. 【原】AFNetworking源码阅读(四)

    [原]AFNetworking源码阅读(四) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 上一篇还遗留了很多问题,包括AFURLSessionManagerTaskDe ...

  7. 【原】AFNetworking源码阅读(三)

    [原]AFNetworking源码阅读(三) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 上一篇的话,主要是讲了如何通过构建一个request来生成一个data tas ...

  8. 【原】AFNetworking源码阅读(二)

    [原]AFNetworking源码阅读(二) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 上一篇中我们在iOS Example代码中提到了AFHTTPSessionMa ...

  9. 【原】AFNetworking源码阅读(一)

    [原]AFNetworking源码阅读(一) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 AFNetworking版本:3.0.4 由于我平常并没有经常使用AFNetw ...

随机推荐

  1. 题解 【POJ1722】 SUBTRACT

    先讲下题目意思 给定一个长度为\(n\)的序列\((1 \leq n \leq 100)\), 每次合并两个元素\(i,i+1\),即将\(i,i+1\)变为一个新的元素,权值为\(a[i]-a[i+ ...

  2. Linux通过秘钥远程连接

    1. 秘钥生成命令 ssh-keygen 执行完上述的命令就会在root目录下生成公钥跟私钥文件 /root/.ssh/.id_rsa   私钥 /root/.ssh/.id_rsa.pub   公钥 ...

  3. UI案例

    <Window x:Class="WpfDemo2.MainWindow" xmlns="http://schemas.microsoft.com/winfx/20 ...

  4. python随机生成库faker库api详解

    # -*- coding: utf-8 -*- # @Author : FELIX # @Date : 2018/6/30 9:49 from faker import Factory # zh_CN ...

  5. 学习CUDA--硬件的简单学习

    #目录 day0:硬件的简单学习 #0:写在前面的话 新年开始,一起学习了解一下CUDA的知识,做机器学习的,或者说研究机器学习深度学习算法的人如果只会用算法还是远远不够的,最好能够把一些基本的算法动 ...

  6. [JZOJ5400]:Repulsed(贪心+树形DP)

    题目描述 小$w$心里的火焰就要被熄灭了. 简便起见,假设小$w$的内心是一棵$n-1$条边,$n$个节点的树. 现在你要在每个节点里放一些个灭火器,每个节点可以放任意多个. 接下来每个节点都要被分配 ...

  7. Java EE 之 Hibernate异常解决:org.hibernate.exception.SQLGrammarException: could not execute statement

    本质原因:配置的Java Bean,由Hibernate自动产生的SQL语句中有语法错误 原因如下: 情况1.存在字段名/表名与数据库关键字冲突 情况2.MySQL5.0以后与MySQL5.0以前事务 ...

  8. Nginx事件管理之事件处理流程

    1. 概述 事件处理要解决的两个问题: "惊群" 问题,即多个 worker 子进程监听相同端口时,在 accept 建立新连接时会有争抢,引发不必要的上下文切换, 增加系统开销. ...

  9. kentico中page alias的使用

    这里设置的path or pattern,是针对于根目录而言的

  10. 卸载apache

    1.查看httpd相关软件包 rpm -qa|grep httpd 2.卸载命令, “rpm -e 软件或服务名” 如果出现类似“httpd >= 2.2.0 is needed by (ins ...