Linux设备驱动程序 之 信号量和互斥体
概念
一个信号量本质是一个整数值,它和一堆函数联合使用,这一对函数通常称为P和V;希望进入临界区的进程将在相关信号量上调用P;如果信号量的值大于零,则该值会减少1,进程可以继续执行;相反,如果信号量的值为0或者更小,则进程必须等待知道其他人释放该信号量;对信号量的解锁通过调用V完成;该函数增加信号量的值,并在必要时唤醒等待的进程;
当信号量用于互斥时(即避免多个进程同时在一个临界区中运行),信号量 的值应该初始化为1;这种信号量在任何给定时刻只能由单个进程或者线程拥有;这种使用模式下,一个信号量有时也成为一个互斥体(mutex),它是互斥的简称;
Linux内核汇总几乎所有的信号量均用于互斥体;
信号量的使用
Linux内核遵守上述语义提供了信号量的实现,要使用信号量,内核代码必须包含<linux/semaphore.h>,相关的类型是struct semaphore;
实际的信号量可以通过集中途径来生命和初始化;
直接创建信号量,其中val参数是赋予一个信号量的初始值;
static inline void sema_init(struct semaphore *sem, int val)
Linux中P函数被称为down–或者这个名字的变种;该类函数减小了信号量的值,它也许会将调用者置于休眠状态,然后等待信号量变为可用,之后授予调用者对保护资源的访问;作为通常规则,我们不应该使用非中断的操作;down的几个变种函数都有返回值,需要始终进行检查;
Linux中V函数被称为up,该函数增加了信号量的值,使用该函数后,调用者不再拥有该信号量;任何down操作都需要对应进行up操作,特别注意在错误分支中对已持有信号量的释放;
void down(struct semaphore *sem);
int __must_check down_interruptible(struct semaphore *sem);
int __must_check down_killable(struct semaphore *sem);
int __must_check down_trylock(struct semaphore *sem);
int __must_check down_timeout(struct semaphore *sem, long jiffies);
void up(struct semaphore *sem);
读写信号量的使用
许多任务可以划分成两种不同的工作类型:一些任务只需要读取受保护的数据结构,而其他的则必须做出修改;允许多个并发读取是可能的,只要它们中没有哪个要做修改;这样做可以大大的提高性能,以内容只读任务可以并行的完成它们的工作,而不需要等待其他读取者退出临界区;
内核中为这种情形提供了一种特殊的信号量类型,rwsem,虽然使用比较少,但偶尔也比较有用;
使用rwsem必须包含头文件<linux/rwsem.h>,对应的数据类型是struct rw_semaphore;
在使用之前需要使用init_rwsem宏进行初始化;
#define init_rwsem(sem) \
do { \
static struct lock_class_key __key; \
\
__init_rwsem((sem), #sem, &__key); \
} while ()
down_read系列函数提供了对保护资源的只读访问,可以和其他读取者并发的访问;down_write则提供了对保护资源的写访问,与其他读写着互斥;一个rwsem允许一个写入者和多个读取者拥有该信号量;up_xxx操作则用于释放已经持有的信号量;
/*
* lock for reading
*/
extern void down_read(struct rw_semaphore *sem); /*
* trylock for reading -- returns 1 if successful, 0 if contention
*/
extern int down_read_trylock(struct rw_semaphore *sem); /*
* lock for writing
*/
extern void down_write(struct rw_semaphore *sem);
extern int __must_check down_write_killable(struct rw_semaphore *sem); /*
* trylock for writing -- returns 1 if successful, 0 if contention
*/
extern int down_write_trylock(struct rw_semaphore *sem); /*
* release a read lock
*/
extern void up_read(struct rw_semaphore *sem); /*
* release a write lock
*/
extern void up_write(struct rw_semaphore *sem); /*
* downgrade write lock to read lock
*/
extern void downgrade_write(struct rw_semaphore *sem);
互斥体的使用
Linux内核互斥体之前是以val为1的信号量存在的,现在已经单独实现;使用互斥体需要包含<linux/mutex.h>头文件;
mutex_init宏完成对互斥量的初始化;
#define mutex_init(mutex) \
do { \
static struct lock_class_key __key; \
\
__mutex_init((mutex), #mutex, &__key); \
} while ()
其中包含了一些列的lock与unlock操作,如下所示,其中mutex_lock_xxx表示在进入临界区之前加锁的操作,mutex_unlock操作表示退出临界区的解锁的操作;
extern void mutex_lock(struct mutex *lock);
extern int __must_check mutex_lock_interruptible(struct mutex *lock);
extern int __must_check mutex_lock_killable(struct mutex *lock);
extern void mutex_lock_io(struct mutex *lock); # define mutex_lock_nested(lock, subclass) mutex_lock(lock)
# define mutex_lock_interruptible_nested(lock, subclass) mutex_lock_interruptible(lock)
# define mutex_lock_killable_nested(lock, subclass) mutex_lock_killable(lock)
# define mutex_lock_nest_lock(lock, nest_lock) mutex_lock(lock)
# define mutex_lock_io_nested(lock, subclass) mutex_lock(lock)
#endif /*
* NOTE: mutex_trylock() follows the spin_trylock() convention,
* not the down_trylock() convention!
*
* Returns 1 if the mutex has been acquired successfully, and 0 on contention.
*/
extern int mutex_trylock(struct mutex *lock);
extern void mutex_unlock(struct mutex *lock); extern int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock);
Linux设备驱动程序 之 信号量和互斥体的更多相关文章
- linux设备驱动程序该添加哪些头文件以及驱动常用头文件介绍(转)
原文链接:http://blog.chinaunix.net/uid-22609852-id-3506475.html 驱动常用头文件介绍 #include <linux/***.h> 是 ...
- 【转】linux设备驱动程序中的阻塞机制
原文网址:http://www.cnblogs.com/geneil/archive/2011/12/04/2275272.html 阻塞与非阻塞是设备访问的两种方式.在写阻塞与非阻塞的驱动程序时,经 ...
- 【APUE】信号量、互斥体和自旋锁
http://www.cnblogs.com/biyeymyhjob/archive/2012/07/21/2602015.html http://blog.chinaunix.net/uid-205 ...
- Linux设备驱动程序学习之分配内存
内核为设备驱动提供了一个统一的内存管理接口,所以模块无需涉及分段和分页等问题. 我已经在第一个scull模块中使用了 kmalloc 和 kfree 来分配和释放内存空间. kmalloc 函数内幕 ...
- linux设备驱动程序-设备树(1)-dtb转换成device_node
linux设备驱动程序-设备树(1)-dtb转换成device_node 本设备树解析基于arm平台 从start_kernel开始 linux最底层的初始化部分在HEAD.s中,这是汇编代码,我们暂 ...
- linux设备驱动程序-设备树(3)-设备树多级子节点的转换
linux设备驱动程序--设备树多级子节点的转换 在上一章:设备树处理之--device_node转换成platform_device中,有提到在设备树的device_node到platform_de ...
- linux设备驱动程序-i2c(2)-adapter和设备树的解析
linux设备驱动程序-i2c(2)-adapter和设备树的解析 (注: 基于beagle bone green开发板,linux4.14内核版本) 在本系列linux内核i2c框架的前两篇,分别讲 ...
- linux设备驱动程序--在用户空间注册文件接口
linux字符设备驱动程序--创建设备节点 基于4.14内核,运行在beagleBone green 在上一讲中,我们写了第一个linux设备驱动程序--hello_world,在驱动程序中,我们什么 ...
- linux设备驱动程序--gpio控制
gpio驱动程序 上一章节linux设备驱动程序--创建设备节点章节主要介绍了linux字符设备驱动程序的框架,从这一章节开始我们讲解各种外设的控制,包括gpio,i2c,dma等等,既然是外设,那就 ...
随机推荐
- html中正则匹配img
1.正则匹配html中的img标签,取出img的url并进行图片文件下载: /// <summary> /// 将image标签的src属性的url替换为base64 /// </s ...
- sys和system用户的权限区别
http://blog.sina.com.cn/s/blog_869b0f460100uckp.html Oracle sys和system用户.sysdba 和sysoper系统权限.sysdba和 ...
- 解释mysql 语句
一.在我们创建mysql数据库的时候我们经常会用到这句SQL: CREATE DATABASE TEST DEFAULT CHARACTER SET utf8 COLLATE utf8_general ...
- hadoop中hive的属性
1.在hive中是可以删除文件的: hive> dfs -rm -R /u2.txt > ; Deleted /u2.txt 2.hive 中的default数据库 <propert ...
- Man手册--nmap
目录 nmap使用手册 附录: nmap使用手册 附录: NMAP(1) Nmap Reference Guide NMAP(1) NAME nmap - Network exploration to ...
- STM32——CAN总线过滤器设置
STM32CAN控制器每个筛选器组由两个32位的寄存器组成. 根据所需位宽的不同,各个筛选器可配置成16位或32位模式(如下图,当FSCx=1为32位模式,FSCx=0时为16位模式).同时,筛选器的 ...
- LoadRunner(8)
一.脚本关联技术 引入: 打开WebTours首页,点击administration连接: 具有大量管理项,LR为了模拟一些特效设置的选项,实际项目中不存在. -> 选择第三项: Set LO ...
- body element height id small, but the backgroud color is full screen
http://www.cnblogs.com/xiaoyuersdch/p/9156240.html ------------------------------------------------- ...
- php操作kafka
php操作kafka----可以参照网上的安装步骤,先安装ldkafka rdkafka,然乎启动zookeeper和kafka服务器 <?php //$conf = new Rdkafka\P ...
- IDEA 安装与破解(亲测有效)
本文转载:https://blog.csdn.net/g_blue_wind/article/details/74380483 根据以下的流程,顺利安装了最新版本的idea企业版. IDEA 全称 I ...