POJ1860-Currency Exchange (正权回路)【Bellman-Ford】
<题目链接>
<转载于 >>> >
题目大意:
有多种汇币,汇币之间可以交换,这需要手续费,当你用100A币交换B币时,A到B的汇率是29.75,手续费是0.39,那么你可以得到(100 - 0.39) * 29.75 = 2963.3975 B币。问s币的金额经过交换最终得到的s币金额数能否增加。
货币的交换是可以重复多次的,所以我们需要找出是否存在正权回路,且最后得到的s金额是增加的
怎么找正权回路呢?(正权回路:在这一回路上,顶点的权值能不断增加即能一直进行松弛)
解题思路:
本题与bellman的目的刚好相反。即bellman本用于找负环,求最小路径,本题是利用同样的思想找正环,求最大路径,因此,改变一下初始化和松弛操作,再加上对正环的判定即可。
#include<iostream>
using namespace std; int n; //货币种数
int m; //兑换点数量
int s; //持有第s种货币,表示哪个点,代表起点
double v; //持有的s货币的本金 int all; //边总数
double dis[]; //s到各点的权值 class EDGE
{
public:
int a; //货币a
int b; //货币b
double r; //rate
double c; //手续费
}edge[]; void add(int u,int v,double vala,double valb){
edge[all].a=u,edge[all].b=v,edge[all].r=vala,edge[all++].c=valb;
} bool bellman()
{
memset(dis,,sizeof(dis)); //这里与bellman的目的刚好相反。初始化为源点到各点距离无穷小
dis[s]=v; //即bellman本用于找负环,求最小路径,本题是利用同样的思想找正环,求最大路径 /*relax*/ bool flag;
for(int i=;i<=n-;i++)
{
flag=false;
for(int j=;j<all;j++)
if(dis[edge[j].b] < (dis[edge[j].a] - edge[j].c) * edge[j].r) //寻找最长路径
{ //进行比较的是"某点到自身的权值"和"某点到另一点的权值"
dis[edge[j].b] = (dis[edge[j].a] - edge[j].c) * edge[j].r;
flag=true;
}
if(!flag) //如果不能更新了,就直接跳出
break;
} /*Search Positive Circle*/ for(int k=;k<all;k++)
if(dis[edge[k].b] < (dis[edge[k].a] - edge[k].c) * edge[k].r) //正环能够无限松弛
return true;
return false;
} int main()
{
int a,b;
double rab,cab,rba,cba;
while(cin>>n>>m>>s>>v)
{
all=;
for(int i=;i<m;i++) //构建无向边
{
cin>>a>>b>>rab>>cab>>rba>>cba;
add(a,b,rab,cab);
add(b,a,rba,cba);
} /*Bellman-form Algorithm*/ if(bellman()) //存在正环
cout<<"YES"<<endl;
else
cout<<"NO"<<endl;
} return ;
}
2018-08-27
POJ1860-Currency Exchange (正权回路)【Bellman-Ford】的更多相关文章
- 图论 --- spfa + 链式向前星 : 判断是否存在正权回路 poj 1860 : Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 19881 Accepted: 711 ...
- Currency Exchange 货币兑换 Bellman-Ford SPFA 判正权回路
Description Several currency exchange points are working in our city. Let us suppose that each point ...
- poj 1860 Currency Exchange (SPFA、正权回路 bellman-ford)
链接:poj 1860 题意:给定n中货币.以及它们之间的税率.A货币转化为B货币的公式为 B=(V-Cab)*Rab,当中V为A的货币量, 求货币S通过若干此转换,再转换为原本的货币时是否会添加 分 ...
- POJ 1860 Currency Exchange(最短路&spfa正权回路)题解
题意:n种钱,m种汇率转换,若ab汇率p,手续费q,则b=(a-q)*p,你有第s种钱v数量,问你能不能通过转化让你的s种钱变多? 思路:因为过程中可能有负权值,用spfa.求是否有正权回路,dis[ ...
- POJ1860——Currency Exchange(BellmanFord算法求最短路)
Currency Exchange DescriptionSeveral currency exchange points are working in our city. Let us suppos ...
- [ACM] hdu 1217 Arbitrage (bellman_ford最短路,推断是否有正权回路或Floyed)
Arbitrage Problem Description Arbitrage is the use of discrepancies in currency exchange rates to tr ...
- POJ1860:Currency Exchange(BF)
http://poj.org/problem?id=1860 Description Several currency exchange points are working in our city. ...
- Bellman_ford货币兑换——正权回路判断
POJ1860 题目大意:你在某一点有一些钱,给定你两点之间钱得兑换规则,问你有没有办法使你手里的钱增多.就是想看看转一圈我的钱能不能增多,出现这一点得条件就是有兑换钱得正权回路,所以选择用bellm ...
- HDU - 1317 ~ SPFA正权回路的判断
题意:有最多一百个房间,房间之间连通,到达另一个房间会消耗能量值或者增加能量值,求是否能从一号房间到达n号房间. 看数据,有定5个房间,下面有5行,第 iii 行代表 iii 号 房间的信息,第一个数 ...
随机推荐
- luogu P2662 牛场围栏
传送门 因为一个木板可以切掉最多\(m\),所以可以先预处理哪些长度的木板可用,开个桶,然后对\([l-m,l]\)打标记,再把打了标记的数取出来 假设可用长度\(a_1,a_2,,,a_n\)从小到 ...
- MySQL中几个关于时间/时区的变量
一.log_timestamps 1.1.官方解释 log_timestamps: Log timestamp format. Added in MySQL 5.7.2.This variable c ...
- SpringBoot集成Dubbo
(1).新建一个普通Maven项目,用于存放一些公共服务接口及公共的Bean等. 项目: 公共Bean: package cn.coreqi.entities; import java.io.Seri ...
- 嵌入式linux系统中,lsusb出现unable to initialize libusb: -99 解决办法 【转】
转自:http://cpbest.blog.163.com/blog/static/41241519201111575726966/ libusb是linux系统中,提供给用户空间访问usb设备的AP ...
- DES加密模式详解
DES加密模式详解 http://www.cnblogs.com/Lawson/archive/2012/05/20/2510781.html http://www.blogjava.net/wayn ...
- KVM -> 虚拟机磁盘管理_03
1.KVM磁盘管理 1.KVM qcow2.raw.vmdk等镜像格式说明:http://blog.csdn.net/zhengmx100/article/details/53887162 raw: ...
- saltstack自动化运维系列⑥SaltStack实践安装配置HAproxy的Keepalived
saltstack自动化运维系列⑥SaltStack实践安装配置HAproxy的Keepalived 安装配置Keepalived 1.编写功能模块 #创建keepalived目录# mkdir -p ...
- 前端web服务器数据同步方案
概述: 网站采用了web和mysql数据库分离的架构,前端有web1.web2.web3需要对他们进行上传文件同步 方案: 在web2的windows服务器上安装GoodSync软件,利用其双向同步特 ...
- 安装最新版的2016版Pycharm后,激活码
2016年安装Pycharm后,过段时间过期.亲测只需要复制以下激活码可以完美解决激活问题,又可以开心的写Python了.以下为激活码内容: BIG3CLIK6F-eyJsaWNlbnNlSWQiOi ...
- Servlet注释与部署描述符
值得注意的是,部署描述符优先于注释.换句话说,部署描述符覆盖通过注释机制所规定的配置信息.Web 部署描述符的 3.0 版本在 web-app 元素上包含一种名为 metadata-complete ...