POJ - 1836 Alignment (动态规划)
https://vjudge.net/problem/POJ-1836
题意
求最少删除的数,使序列中任意一个位置的数的某一边都是递减的。
分析
任意一个位置的数的某一边都是递减的,就是说对于数h[i],有h[1] ~ h[i]严格单增,或h[i] ~ h[n]严格单减。一开始读错题意,以为使总体递增或递减,使劲wa。。。求两个方向的LIS,用n^2解法即可。
#include<iostream>
#include<cmath>
#include<cstring>
#include<queue>
#include<vector>
#include<cstdio>
#include<algorithm>
#include<map>
#include<set>
#define rep(i,e) for(int i=0;i<(e);i++)
#define rep1(i,e) for(int i=1;i<=(e);i++)
#define repx(i,x,e) for(int i=(x);i<=(e);i++)
#define X first
#define Y second
#define PB push_back
#define MP make_pair
#define mset(var,val) memset(var,val,sizeof(var))
#define scd(a) scanf("%d",&a)
#define scdd(a,b) scanf("%d%d",&a,&b)
#define scddd(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define pd(a) printf("%d\n",a)
#define scl(a) scanf("%lld",&a)
#define scll(a,b) scanf("%lld%lld",&a,&b)
#define sclll(a,b,c) scanf("%lld%lld%lld",&a,&b,&c)
#define IOS ios::sync_with_stdio(false);cin.tie(0) using namespace std;
typedef long long ll;
template <class T>
void test(T a){cout<<a<<endl;}
template <class T,class T2>
void test(T a,T2 b){cout<<a<<" "<<b<<endl;}
template <class T,class T2,class T3>
void test(T a,T2 b,T3 c){cout<<a<<" "<<b<<" "<<c<<endl;}
template <class T>
inline bool scan_d(T &ret){
char c;int sgn;
if(c=getchar(),c==EOF) return ;
while(c!='-'&&(c<''||c>'')) c=getchar();
sgn=(c=='-')?-:;
ret=(c=='-')?:(c-'');
while(c=getchar(),c>=''&&c<='') ret = ret*+(c-'');
ret*=sgn;
return ;
}
//const int N = 1e6+10;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const ll mod = ;
int T; void testcase(){
printf("Case %d:",++T);
} const int MAXN = 5e5+ ;
const int MAXM = ;
const double eps = 1e-;
const double PI = acos(-1.0); int dp1[],dp2[];
double h[];
int main() {
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif // LOCAL
int n;
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%lf",&h[i]); for(int i=;i<=n;i++){
dp1[i]=;
for(int j=;j<i;j++){
if(h[i]>h[j]) dp1[i]=max(dp1[i],dp1[j]+);
}
}
for(int i=n;i>=;i--){
dp2[i]=;
for(int j=n;j>i;j--){
if(h[i]>h[j]) dp2[i]=max(dp2[i],dp2[j]+);
}
}
int ans=;
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
ans=max(ans,dp1[i]+dp2[j]);
}
}
cout<<n-ans;
return ;
}
POJ - 1836 Alignment (动态规划)的更多相关文章
- poj 1836 Alignment(dp)
题目:http://poj.org/problem?id=1836 题意:最长上升子序列问题, 站队,求踢出最少的人数后,使得队列里的人都能看到 左边的无穷远处 或者 右边的无穷远处. 代码O(n^2 ...
- POJ 1836 Alignment 水DP
题目: http://poj.org/problem?id=1836 没读懂题,以为身高不能有相同的,没想到排中间的两个身高是可以相同的.. #include <stdio.h> #inc ...
- poj 1836 Alignment(线性dp)
题目链接:http://poj.org/problem?id=1836 思路分析:假设数组为A[0, 1, …, n],求在数组中最少去掉几个数字,构成的新数组B[0, 1, …, m]满足条件B[0 ...
- POJ 1836 Alignment
Alignment Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 11450 Accepted: 3647 Descriptio ...
- POJ 1836 Alignment (双向DP)
Alignment Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 10804 Accepted: 3464 Descri ...
- POJ 1836 Alignment(DP max(最长上升子序列 + 最长下降子序列))
Alignment Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 14486 Accepted: 4695 Descri ...
- POJ 1836 Alignment 最长递增子序列(LIS)的变形
大致题意:给出一队士兵的身高,一开始不是按身高排序的.要求最少的人出列,使原序列的士兵的身高先递增后递减. 求递增和递减不难想到递增子序列,要求最少的人出列,也就是原队列的人要最多. 1 2 3 4 ...
- POJ 1836 Alignment --LIS&LDS
题意:n个士兵站成一排,求去掉最少的人数,使剩下的这排士兵的身高形成“峰形”分布,即求前面部分的LIS加上后面部分的LDS的最大值. 做法:分别求出LIS和LDS,枚举中点,求LIS+LDS的最大值. ...
- poj 1836 LIS变形
题目链接http://poj.org/problem?id=1836 Alignment Time Limit: 1000MS Memory Limit: 30000K Total Submiss ...
随机推荐
- linux系统centOS7下搭建redis集群中ruby版本过低问题的解决方法
问题描述: 在Centos7中,通过yum安装ruby的版本是2.0.0,但是如果有些应用需要高版本的ruby环境,比如2.2,2.3,2.4... 那就有点麻烦了,譬如:我准备使用redis官方给的 ...
- Node require
var user = require("./module_user");//使用模块 module_userconsole.log(user.userCount);user.use ...
- appium使用错误集合
原因:没有加载该文件 解决方案: cmd 使用:adb shell uiautomator dump 在cmd生成 然后就可以获取元素了 使用send_keys()输入报错 selenium.c ...
- BZOJ1045 HAOI2008糖果传递(贪心)
显然最后每个小朋友所拥有的糖果数就是糖果数总和的平均数.设该平均数为t. 环的问题一般断成链,但这个题似乎没有什么很好的办法在枚举断点的时候快速算出答案(我甚至不知道会不会有断点) 于是我们假装把他断 ...
- LOJ #6432. 「PKUSC2018」真实排名(组合数)
题面 LOJ #6432. 「PKUSC2018」真实排名 注意排名的定义 , 分数不小于他的选手数量 !!! 题解 有点坑的细节题 ... 思路很简单 , 把每个数分两种情况讨论一下了 . 假设它为 ...
- 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)
[51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...
- 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告
P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...
- mathML如何在谷歌浏览器进行展示
前几天不是做了个word公式的解析吗,就是office插入的公式是个xmlObject对象,读出来就是个String,所以要进行转换才能在网页上展示,其实我对这方面也不是很了解,然后各种百度解决方案, ...
- 从C,C++,JAVA和C#来看String库的发展(二)---JAVA和C#篇
http://www.cnblogs.com/wenjiang/p/3272859.html 终于要进入面向对象的世界了,虽然C++也是面向对象,但是它的面向对象程度并不高,因为考虑到要兼容C语言的移 ...
- c c++ 混合编译
单个源文件生成可执行程序 下面是一个保存在文件 helloworld.cpp 中一个简单的 C++ 程序的代码: 1 2 3 4 5 6 7 8 9 /* helloworld.cpp */ # ...