You, the head of Department of Security, recently received a top-secret information that a group of terrorists is planning to transport some WMD 1 from one city (the source) to another one (the destination). You know their date, source and destination, and they are using the highway network.
  The highway network consists of bidirectional highways, connecting two distinct city. A vehicle can only enter/exit the highway network at cities only.
  You may locate some SA (special agents) in some selected cities, so that when the terrorists enter a city under observation (that is, SA is in this city), they would be caught immediately.
  It is possible to locate SA in all cities, but since controlling a city with SA may cost your department a certain amount of money, which might vary from city to city, and your budget might not be able to bear the full cost of controlling all cities, you must identify a set of cities, that:
  * all traffic of the terrorists must pass at least one city of the set.
  * sum of cost of controlling all cities in the set is minimal.
  You may assume that it is always possible to get from source of the terrorists to their destination.
------------------------------------------------------------
1 Weapon of Mass Destruction

题意:有一些城市,城市之间有一些边,有通缉犯要从一个城市到另一个城市,为了抓捕通缉犯,你需要调遣兵力守在若干城市,以保证通缉犯无论从哪里走都一定会经过有你的部下看守的城市,问最少需要部署多少个城市。

最小割性质的裸题,就是使原点和汇点不连通的最小割的大小,建边直接跑网络流,最大流=最小割。

 #include<stdio.h>
#include<string.h>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std;
const int maxm=;
const int INF=0x7fffffff; struct edge{
int from,to,f;
edge(int a,int b,int c):from(a),to(b),f(c){}
}; struct dinic{
int s,t,m;
vector<edge>e;
vector<int>g[maxm];
bool vis[maxm];
int cur[maxm],d[maxm]; void init(int n){
for(int i=;i<=n;i++)g[i].clear();
e.clear();
} void add(int a,int b,int c){
e.push_back(edge(a,b,c));
e.push_back(edge(b,a,));
m=e.size();
g[a].push_back(m-);
g[b].push_back(m-);
} bool bfs(){
memset(vis,,sizeof(vis));
queue<int>q;
q.push(s);
vis[s]=;
d[s]=;
while(!q.empty()){
int u=q.front();
q.pop();
for(int i=;i<g[u].size();i++){
edge tmp=e[g[u][i]];
if(!vis[tmp.to]&&tmp.f>){
d[tmp.to]=d[u]+;
vis[tmp.to]=;
q.push(tmp.to);
}
}
}
return vis[t];
} int dfs(int x,int a){
if(x==t||a==)return a;
int flow=,f;
for(int& i=cur[x];i<g[x].size();i++){
edge& tmp=e[g[x][i]];
if(d[tmp.to]==d[x]+&&tmp.f>){
f=dfs(tmp.to,min(a,tmp.f));
tmp.f-=f;
e[g[x][i]^].f+=f;
flow+=f;
a-=f;
if(a==)break;
}
}
if(flow==)d[x]=-;
return flow;
} int mf(int s,int t){
this->s=s;
this->t=t;
int flow=;
while(bfs()){
memset(cur,,sizeof(cur));
flow+=dfs(s,INF);
}
return flow;
}
}; int main(){
int n,m;
while(scanf("%d%d",&n,&m)!=EOF){
dinic d;
d.init(*n+);
int a,b;
scanf("%d%d",&a,&b);
d.add(,a,INF);
d.add(b+n,*n+,INF);
int i,j;
for(i=;i<=n;i++){
scanf("%d",&a);
d.add(i,i+n,a);
}
for(i=;i<=m;i++){
scanf("%d%d",&a,&b);
d.add(a+n,b,INF);
d.add(b+n,a,INF);
}
printf("%d\n",d.mf(,*n+));
}
return ;
}

hdu4289 Control 最大流最小割的更多相关文章

  1. HDU4289 Control —— 最小割、最大流 、拆点

    题目链接:https://vjudge.net/problem/HDU-4289 Control Time Limit: 2000/1000 MS (Java/Others)    Memory Li ...

  2. hdu-4289.control(最小割 + 拆点)

    Control Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  3. hdu4289 Control --- 最小割,拆点

    给一个无向图.告知敌人的起点和终点.你要在图上某些点安排士兵.使得敌人不管从哪条路走都必须经过士兵. 每一个点安排士兵的花费不同,求最小花费. 分析: 题意可抽象为,求一些点,使得去掉这些点之后,图分 ...

  4. HDU-4289-Control(最大流最小割,拆点)

    链接: https://vjudge.net/problem/HDU-4289 题意: You, the head of Department of Security, recently receiv ...

  5. hiho 第116周,最大流最小割定理,求最小割集S,T

    小Hi:在上一周的Hiho一下中我们初步讲解了网络流的概念以及常规解法,小Ho你还记得内容么? 小Ho:我记得!网络流就是给定了一张图G=(V,E),以及源点s和汇点t.每一条边e(u,v)具有容量c ...

  6. hihocoder 网络流二·最大流最小割定理

    网络流二·最大流最小割定理 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi:在上一周的Hiho一下中我们初步讲解了网络流的概念以及常规解法,小Ho你还记得内容么? ...

  7. [HihoCoder1378]网络流二·最大流最小割定理

    思路: 根据最大流最小割定理可得最大流与最小割相等,所以可以先跑一遍EdmondsKarp算法.接下来要求的是经过最小割切割后的图中$S$所属的点集.本来的思路是用并查集处理所有前向边构成的残量网络, ...

  8. HDU 1569 方格取数(2)(最大流最小割の最大权独立集)

    Description 给你一个m*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的数的和最大.   ...

  9. FZU 1844 Earthquake Damage(最大流最小割)

    Problem Description Open Source Tools help earthquake researchers stay a step ahead. Many geological ...

随机推荐

  1. js数组及常用数学方法

    数组方法 清空数组   1: arr.length=0;   2: arr=[]; arr.push()          //往数组最后一个添加元素,会待会一个返回值,就是新的数组长度arr.uns ...

  2. day31-python阶段性复习五

    打印目录下所有文件 os 模块 os.listdir(‘/home’) 列出目录下所有文件 os.path.isdir(‘/home’) 判断一个文件是不是一个目录 os.path.isfile(‘/ ...

  3. mybatis generator工具的使用

    mybatis反转数据库的配置文件: generatorConfig.xml: <?xml version="1.0" encoding="UTF-8"? ...

  4. Grafana配置SingleStat图表信息(三)

    Grafana是一个用于展示数据的工具,配置数据源,直接连接数据库.(这里的数据库应该是结果库,直接需要给用户看的结果数据信息) SingleStat : 想用来展示单一数据信息的图表,效果图如图 ( ...

  5. 用swagger生成接口文档代码

    1.Swagger2类: package com.example.demo; import com.google.common.base.Predicate; import io.swagger.an ...

  6. python造数

    做性能测试时,往往需要大量的参数化数据,比如注册. from random import Random def random_str(randomlength=8): str='' chars='01 ...

  7. 使用DLL在进程间共享数据

    0x01 DLL在进程间共享数据理论 1.可以在Dll中使用#pragma data_seg建立共享类型的数据段将需要共享的数据分离出来,放置在一个独立的数据段里,并把该段的属性设置为共享,从而实现不 ...

  8. [PyImageSearch] Ubuntu16.04 使用OpenCV和python识别信用卡 OCR

    在今天的博文中,我将演示如何使用模板匹配作为OCR的一种形式来帮助我们创建一个自动识别信用卡并从图像中提取相关信用卡数位的解决方案. 今天的博文分为三部分. 在第一部分中,我们将讨论OCR-A字体,这 ...

  9. linux执行可执行文件时报xxx:not found

    实际上是因为可执行文件执行时所依赖的动态链接库找不到,解决方法为在编译时加-static表示使用静态链接. 或者使用arm-linux-readelf -d +可执行文件,查看该可执行文件依赖的动态链 ...

  10. linux下关于PCL(point cloud library)库的安装,三行命令错误的问题

    最近想再看看PCL,所以进行了安装,在之前的接触的过程中,由于之前的网络存在问题,导致以下三个命令: sudo add-apt-repository ppa:v-launchpad-jochen-sp ...