HDU 4666 Hyperspace (最远曼哈顿距离)
Hyperspace
Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 314 Accepted Submission(s): 155
However, the device is in test phase, often in a unstable state. Mr.Smith worried that it may cause an explosion while testing it. The energy of the device is related to the maximum manhattan distance among particle.
Particles may appear and disappear any time. Mr.Smith wants to know the maxmium manhattan distance among particles when particle appears or disappears.
In each case: In the first line, there are two integer q(number of particle appear and disappear event, ≤60000) and k(dimensions of the hyperspace that the hyperspace the device generated, ≤5). Then follows q lines. In each line, the first integer ‘od’ represents the event: od = 0 means this is an appear
event. Then follows k integer(with absolute value less then 4 × 107). od = 1 means this is an disappear event. Follows a integer p represents the disappeared particle appeared in the pth event.
0 208 403
0 371 -180
1 2
0 1069 -192
0 418 -525
1 5
1 1
0 2754 635
0 -2491 961
0 2954 -2516
746
0
1456
1456
1456
0
2512
5571
8922
题意:给定一些操作(0代表添加一个点,1代表删除一个点),求这些点的最远曼哈顿距离。
可先参考POJ 2926 Requirements:http://poj.org/problem?id=2926
POJ该题思路:
以二维平面为例:
设距离最远的两点为 i, j,可知所求的最大距离必定有以下四种形式之一:
(xi-xj)+(yi-yj), (xj-xi)+(yi-yj), (xi-xj)+(yj-yi), (xj-xi)+(yj-yi) 变形一下,把相同点的坐标放到一起,
即 (xi+yi)-(xj+yj), (-xi+yi)-(-xj+yj), (xi-yi)-(xj-yj), (-xi-yi)-(-xj-yj),可以发现即去绝对值之后把同一点的坐标放在一起,对应坐标符号相同。
假如我们用0表示符号,用1表示正号,那么 (xi+yi) 可以表示为 11。
那么要表示一个维数为 dem 的所有状态,只需要用 0 ~ (2^dem-1) 的所有二进制就可以了。
于是只要对所有的点 (xi,yi),依次计算出 (xi+yi), (xi-yi), (-xi+yi), (-xi-yi)这四种形式,然后把每个点i算出来的这四种情况的最大值、最小值分别记录(更新)到数组 max[] 和 min[] 中,然后枚举每一种去绝对值的组合,组合后的最大值即为 answer。
代码:
#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; const int N=;
const double INF=1e20; int n;
double num[N][],minx[<<],maxx[<<]; int main(){ //freopen("input.txt","r",stdin); while(~scanf("%d",&n)){
for(int i=;i<n;i++)
for(int j=;j<;j++)
scanf("%lf",&num[i][j]);
for(int i=;i<(<<);i++){ //共有(1<<5)种状态,存储每种状态下的最大最小值
minx[i]=INF;
maxx[i]=-INF;
}
double sum;
int tmp;
for(int i=;i<n;i++)
for(int j=;j<(<<);j++){ //枚举每种状态
tmp=j;
sum=;
for(int k=;k<;k++){
if(tmp&)
sum+=num[i][k];
else
sum-=num[i][k];
tmp>>=;
}
if(maxx[j]<sum)
maxx[j]=sum;
if(minx[j]>sum)
minx[j]=sum;
}
double ans=-INF;
for(int i=;i<(<<);i++)
if(maxx[i]-minx[i]>ans)
ans=maxx[i]-minx[i];
printf("%.2f\n",ans);
}
return ;
}
#include<iostream>
#include<cstdio>
#include<cstring>
#include<set> using namespace std; const int N=;
const double INF=1e20; int n,m,num[N][];
//map<int,int,greater<int> > mp[1<<5];
multiset<int> mst[<<];
multiset<int>::iterator it1,it2; int main(){ //freopen("input.txt","r",stdin); while(~scanf("%d%d",&n,&m)){
for(int i=;i<(<<);i++)
mst[i].clear();
int od,x;
for(int i=;i<=n;i++){
scanf("%d",&od);
if(od==){
for(int j=;j<m;j++)
scanf("%d",&num[i][j]);
for(int j=;j<(<<m);j++){
int sum=;
for(int k=;k<m;k++){
if(j&(<<k))
sum+=num[i][k];
else
sum-=num[i][k];
}
mst[j].insert(sum);
}
}else{
scanf("%d",&x);
for(int j=;j<(<<m);j++){
int sum=;
for(int k=;k<m;k++){
if(j&(<<k))
sum+=num[x][k];
else
sum-=num[x][k];
}
it1=mst[j].find(sum);
mst[j].erase(it1);
}
}
int ans=;
//map<int,int>::iterator it1,it2;
for(int j=;j<(<<m);j++){
it1=mst[j].end();
it1--;
it2=mst[j].begin();
ans=max(ans,(*it1)-(*it2));
}
printf("%d\n",ans);
}
}
return ;
}
HDU 4666 Hyperspace (最远曼哈顿距离)的更多相关文章
- [HDU 4666]Hyperspace[最远曼哈顿距离][STL]
题意: 许多 k 维点, 求这些点之间的最远曼哈顿距离. 并且有 q 次操作, 插入一个点或者删除一个点. 每次操作之后均输出结果. 思路: 用"疑似绝对值"的思想, 维护每种状态 ...
- HDU 4666 最远曼哈顿距离
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4666 关于最远曼哈顿距离的介绍: http://blog.csdn.net/taozifish/ar ...
- hdu 4666:Hyperspace(最远曼哈顿距离 + STL使用)
Hyperspace Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Tota ...
- HDU 4666 Hyperspace (2013多校7 1001题 最远曼哈顿距离)
Hyperspace Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Tota ...
- 多校联赛7 1001 hdu 4666(最远哈曼顿距离+优先队列)
吐个糟,尼玛今天被虐成狗了,一题都没搞出来,这题搞了N久居然还是搞不出来,一直TLE,最后还是参考别人代码才领悟的,思路就这么简单, 就是不会转弯,看着模板却不会改,艹,真怀疑自己是不是个笨蛋题意:求 ...
- 2018 Multi-University Training Contest 10 CSGO(HDU - 6435)(最远曼哈顿距离)
有 n 种主武器,m 种副武器.每种武器有一个基础分数k种属性值 X[i] . 选出一种主武器 mw 和一种副武器 sw,使得两种武器的分数和 + 每个属性的差值尽量大.(参考下面的式子) 多维的最远 ...
- poj 2926:Requirements(最远曼哈顿距离,入门题)
Requirements Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3908 Accepted: 1318 Desc ...
- POJ-2926 Requirements 最远曼哈顿距离
题目链接:http://poj.org/problem?id=2926 题意:求5维空间的点集中的最远曼哈顿距离.. 降维处理,推荐2009武森<浅谈信息学竞赛中的“0”和“1”>以及&l ...
- Codeforces 491B. New York Hotel 最远曼哈顿距离
最远曼哈顿距离有两个性质: 1: 对每一个点(x,y) 分别计算 +x+y , -x+y , x-y , -x-y 然后统计每种组合的最大值就能够了, 不会对结果产生影响 2: 去掉绝对值 , 设 ...
随机推荐
- LICEcap方便快捷制作gif图片的工具
总是看见别人的博客里面动态的小图片,是不是有种冲动自己也想搞,但是就是不知道咋搞,这里简单介绍一款很实用的制作gif的软件. LICEcap的网址:http://www.cockos.com/lice ...
- DbCommandInterceptor抓取EF执行时的SQL语句
EF6.1也出来不少日子了,6.1相比6.0有个很大的特点就是新增了System.Data.Entity.Infrastructure.Interception 命名空间,此命名空间下的对象可以允许我 ...
- Android开发之实现多次点击事件
在Android中给我们提供了单次点击事件.但并没有给我们提供双击,或者实现在一定时间内的多次事件.所以需要我们自己在单机监听上进行修改实现. 有如下两种实现方式: 1.定义一个存贮上一个第一次点击的 ...
- HDU3342Legal or Not 拓扑排序
有向图判断是否成环 如果是环输出NO 只要入度为0的点的个数 等于 总的点的个数则无环 #include<bits/stdc++.h> using namespace std; //in ...
- 【Java】 剑指offer(37) 序列化二叉树
本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集 题目 请实现两个函数,分别用来序列化和反序列化二叉树. 思路 一般情况下 ...
- java构造代码块与静态代码块
一:构造代码块 1.概述 作用:给对象初始化. 优先级:优先于对象的构造函数之前执行. { /*构造代码块的代码*/ } 给所有的对象统一的初始化,而构造函数只是给特定的对象初始化,因为构造函数可以重 ...
- 基于python的机器学习开发环境安装(最简单的初步开发环境)
一.安装Python 1.下载安装python3.6 https://www.python.org/getit/ 2.配置环境变量(2个) 略...... 二.安装Python算法库 安装顺序:Num ...
- Python爬虫之PyQuery使用(六)
Python爬虫之PyQuery使用 PyQuery简介 pyquery能够通过选择器精确定位 DOM 树中的目标并进行操作.pyquery相当于jQuery的python实现,可以用于解析HTML网 ...
- hashCode方法的作用?
(1)前言,想要明白hashCode的作用,你必须要先知道Java中的集合. Java中的集合(Collection)有两类,一类是List,再有一类是Set. 前者集合内的元素是有序的,元素可以重复 ...
- C# JSON帮助类(可互转)
public class JsonHelper { public JsonHelper() { // // TODO: Add constructor logic here // } /// < ...