Hyperspace

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 314    Accepted Submission(s): 155

Problem Description
The great Mr.Smith has invented a hyperspace particle generator. The device is very powerful. The device can generate a hyperspace. In the hyperspace, particle may appear and disappear randomly. At the same time a great amount of energy was generated.
However, the device is in test phase, often in a unstable state. Mr.Smith worried that it may cause an explosion while testing it. The energy of the device is related to the maximum manhattan distance among particle.
Particles may appear and disappear any time. Mr.Smith wants to know the maxmium manhattan distance among particles when particle appears or disappears.
 
Input
The input contains several test cases, terminated by EOF.
In each case: In the first line, there are two integer q(number of particle appear and disappear event, ≤60000) and k(dimensions of the hyperspace that the hyperspace the device generated, ≤5). Then follows q lines. In each line, the first integer ‘od’ represents the event: od = 0 means this is an appear
event. Then follows k integer(with absolute value less then 4 × 107). od = 1 means this is an disappear event. Follows a integer p represents the disappeared particle appeared in the pth event.
 
Output
Each test case should contains q lines. Each line contains a integer represents the maximum manhattan distance among paticles.
 
Sample Input
10 2
0 208 403
0 371 -180
1 2
0 1069 -192
0 418 -525
1 5
1 1
0 2754 635
0 -2491 961
0 2954 -2516
 
Sample Output
0
746
0
1456
1456
1456
0
2512
5571
8922
 
Source
 
Recommend
zhuyuanchen520

题意:给定一些操作(0代表添加一个点,1代表删除一个点),求这些点的最远曼哈顿距离。

可先参考POJ  2926  Requirements:http://poj.org/problem?id=2926

POJ该题思路:

以二维平面为例:

设距离最远的两点为 i, j,可知所求的最大距离必定有以下四种形式之一:

(xi-xj)+(yi-yj), (xj-xi)+(yi-yj), (xi-xj)+(yj-yi), (xj-xi)+(yj-yi) 变形一下,把相同点的坐标放到一起,

即 (xi+yi)-(xj+yj), (-xi+yi)-(-xj+yj), (xi-yi)-(xj-yj), (-xi-yi)-(-xj-yj),可以发现即去绝对值之后把同一点的坐标放在一起,对应坐标符号相同。

假如我们用0表示符号,用1表示正号,那么 (xi+yi) 可以表示为 11。

那么要表示一个维数为 dem 的所有状态,只需要用 0 ~ (2^dem-1) 的所有二进制就可以了。

于是只要对所有的点 (xi,yi),依次计算出 (xi+yi), (xi-yi), (-xi+yi), (-xi-yi)这四种形式,然后把每个点i算出来的这四种情况的最大值、最小值分别记录(更新)到数组 max[] 和 min[] 中,然后枚举每一种去绝对值的组合,组合后的最大值即为 answer。

代码:

#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; const int N=;
const double INF=1e20; int n;
double num[N][],minx[<<],maxx[<<]; int main(){ //freopen("input.txt","r",stdin); while(~scanf("%d",&n)){
for(int i=;i<n;i++)
for(int j=;j<;j++)
scanf("%lf",&num[i][j]);
for(int i=;i<(<<);i++){ //共有(1<<5)种状态,存储每种状态下的最大最小值
minx[i]=INF;
maxx[i]=-INF;
}
double sum;
int tmp;
for(int i=;i<n;i++)
for(int j=;j<(<<);j++){ //枚举每种状态
tmp=j;
sum=;
for(int k=;k<;k++){
if(tmp&)
sum+=num[i][k];
else
sum-=num[i][k];
tmp>>=;
}
if(maxx[j]<sum)
maxx[j]=sum;
if(minx[j]>sum)
minx[j]=sum;
}
double ans=-INF;
for(int i=;i<(<<);i++)
if(maxx[i]-minx[i]>ans)
ans=maxx[i]-minx[i];
printf("%.2f\n",ans);
}
return ;
}
#include<iostream>
#include<cstdio>
#include<cstring>
#include<set> using namespace std; const int N=;
const double INF=1e20; int n,m,num[N][];
//map<int,int,greater<int> > mp[1<<5];
multiset<int> mst[<<];
multiset<int>::iterator it1,it2; int main(){ //freopen("input.txt","r",stdin); while(~scanf("%d%d",&n,&m)){
for(int i=;i<(<<);i++)
mst[i].clear();
int od,x;
for(int i=;i<=n;i++){
scanf("%d",&od);
if(od==){
for(int j=;j<m;j++)
scanf("%d",&num[i][j]);
for(int j=;j<(<<m);j++){
int sum=;
for(int k=;k<m;k++){
if(j&(<<k))
sum+=num[i][k];
else
sum-=num[i][k];
}
mst[j].insert(sum);
}
}else{
scanf("%d",&x);
for(int j=;j<(<<m);j++){
int sum=;
for(int k=;k<m;k++){
if(j&(<<k))
sum+=num[x][k];
else
sum-=num[x][k];
}
it1=mst[j].find(sum);
mst[j].erase(it1);
}
}
int ans=;
//map<int,int>::iterator it1,it2;
for(int j=;j<(<<m);j++){
it1=mst[j].end();
it1--;
it2=mst[j].begin();
ans=max(ans,(*it1)-(*it2));
}
printf("%d\n",ans);
}
}
return ;
}

HDU 4666 Hyperspace (最远曼哈顿距离)的更多相关文章

  1. [HDU 4666]Hyperspace[最远曼哈顿距离][STL]

    题意: 许多 k 维点, 求这些点之间的最远曼哈顿距离. 并且有 q 次操作, 插入一个点或者删除一个点. 每次操作之后均输出结果. 思路: 用"疑似绝对值"的思想, 维护每种状态 ...

  2. HDU 4666 最远曼哈顿距离

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4666 关于最远曼哈顿距离的介绍: http://blog.csdn.net/taozifish/ar ...

  3. hdu 4666:Hyperspace(最远曼哈顿距离 + STL使用)

    Hyperspace Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Tota ...

  4. HDU 4666 Hyperspace (2013多校7 1001题 最远曼哈顿距离)

    Hyperspace Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Tota ...

  5. 多校联赛7 1001 hdu 4666(最远哈曼顿距离+优先队列)

    吐个糟,尼玛今天被虐成狗了,一题都没搞出来,这题搞了N久居然还是搞不出来,一直TLE,最后还是参考别人代码才领悟的,思路就这么简单, 就是不会转弯,看着模板却不会改,艹,真怀疑自己是不是个笨蛋题意:求 ...

  6. 2018 Multi-University Training Contest 10 CSGO(HDU - 6435)(最远曼哈顿距离)

    有 n 种主武器,m 种副武器.每种武器有一个基础分数k种属性值 X[i] . 选出一种主武器 mw 和一种副武器 sw,使得两种武器的分数和 + 每个属性的差值尽量大.(参考下面的式子) 多维的最远 ...

  7. poj 2926:Requirements(最远曼哈顿距离,入门题)

    Requirements Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3908   Accepted: 1318 Desc ...

  8. POJ-2926 Requirements 最远曼哈顿距离

    题目链接:http://poj.org/problem?id=2926 题意:求5维空间的点集中的最远曼哈顿距离.. 降维处理,推荐2009武森<浅谈信息学竞赛中的“0”和“1”>以及&l ...

  9. Codeforces 491B. New York Hotel 最远曼哈顿距离

    最远曼哈顿距离有两个性质: 1: 对每一个点(x,y)  分别计算  +x+y , -x+y , x-y , -x-y 然后统计每种组合的最大值就能够了, 不会对结果产生影响 2: 去掉绝对值 , 设 ...

随机推荐

  1. C# 关键字const与readonly的区别

    尽管你写了很多年的C#的代码,但是可能当别人问到你const与readonly的区别时候,还是会小小的愣一会吧~ 笔者也是在看欧立奇版的<.Net 程序员面试宝典>的时候,才发现自己长久以 ...

  2. canvas抛物线运动轨迹

    本来是想做一个贝塞尔曲线运动轨迹的 公式太复杂了,懒得算,公式在最后 我先画了一个抛物线,我确定了两个点,起点(0,0),终点(200,200) 用坐标系可算出方程 y=-0.005x^2 现在找出终 ...

  3. 【AtCoder】CODE FESTIVAL 2017 qual C

    A - Can you get AC? No #include <bits/stdc++.h> #define fi first #define se second #define pii ...

  4. Mysql 账号过期问题

    1.ALTER USER 'root'@'localhost' PASSWORD EXPIRE; 一旦某个用户的这个选项设置为”Y”,那么这个用户还是可以登陆到MySQL服务器,但是在用户未设置新密码 ...

  5. ZooKeeper典型应用场景:分布式锁

    分布式锁是控制分布式系统之间同步访问共享资源的一种方式.如果不同的系统或是同一个系统的不同主机之间共享了一个或一组资源,那么访问这些资源的时候,往往需要通过一些互斥手段来防止彼此之间的干扰,以保证一致 ...

  6. Enrolment API

    由于Moodle 2.0有一个用户注册的新概念,它们完全独立于角色和功能.能力通常与注册状态结合使用. 什么是注册? 登记的用户可以完全参加一门课程.活跃用户注册允许用户输入课程.只有注册的用户可能是 ...

  7. 007.基于Docker的Etcd分布式部署

    一 环境准备 1.1 基础环境 ntp配置:略 #建议配置ntp服务,保证时间一致性 etcd版本:v3.3.9 防火墙及SELinux:关闭防火墙和SELinux 名称 地址 主机名 备注 etcd ...

  8. JS-排序详解-选择排序

    说明 时间复杂度指的是一个算法执行所耗费的时间 空间复杂度指运行完一个程序所需内存的大小 稳定指,如果a=b,a在b的前面,排序后a仍然在b的前面 不稳定指,如果a=b,a在b的前面,排序后可能会交换 ...

  9. 51Nod.1244.莫比乌斯函数之和(杜教筛)

    题目链接 map: //杜教筛 #include<map> #include<cstdio> typedef long long LL; const int N=5e6; in ...

  10. error MSB3073 解决办法

    发现拷贝命令编译错误,查看输出列表发现时无法找到相应的路径. 1.顺着这个思路第一个想到的是中文路径的问题,先修改了盘符的中文名称,发现还是无法解决具体的问题. 2.后来反复查阅网上的资料,发现帮助并 ...