[BZOJ3295] [Cqoi2011]动态逆序对(带修改主席树)
题目描述
对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数。给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序对数。
输入输出格式
输入格式:
输入第一行包含两个整数n和m,即初始元素的个数和删除的元素个数。以下n行每行包含一个1到n之间的正整数,即初始排列。以下m行每行一个正整数,依次为每次删除的元素。
输出格式:
输出包含m行,依次为删除每个元素之前,逆序对的个数。
输入输出样例
5 4
1
5
3
4
2
5
1
4
2
5
2
2
1 样例解释
(1,5,3,4,2),(1,3,4,2),(3,4,2),(3,2),(3)。
说明
N<=100000 M<=50000
题解
原来还以为自己已经会带修改主席树了呢……才发现自己还是太naive……
然后找到的题解全是CDQ分治的……我这个蒟蒻有点方……
然后发现还是zcysky大佬写的最吼啦
还是来详细的说一说
先考虑无修改的逆序对怎么做?
很明显,用树状数组(虽然我今天之前一直以为逆序对个数只能用归并做)
我们记$a1[i]$表示在$i$之前且比$i$大的数的个数(注意,这里的i指的是位置),那么很明显答案为$\sum _{i=1}^n a[i]$
代码实现
for(int i=;i<=n;++i){
val[i]=read(),pos[val[i]]=i;
a1[i]=ask(n)-ask(val[i]);
ans+=a1[i];
for(int j=val[i];j<=n;j+=lowbit(j)) ++c[j];
}
记$a2[i]$表示在$i$之后且比$i$小的数的个数,只要把上面那个倒着推就行了
for(int i=n;i;--i){
a2[i]=ask(val[i]-);
for(int j=val[i];j<=n;j+=lowbit(j)) ++c[j];
}
接下来我们考虑修改操作。
每一次将一个数删除,减少的逆序对个数是多少?
很明显是$a1[i]+a2[i]$,然后我们就可以做啦
于是评测机表示并不想理你并丢给你一堆WA
这个时候我们发现自己忽略了一个关键的问题,如果$a1[i]$和$a2[i]$中表示的数已经有被删除了的怎么办?
我们只要把这些被删除的数减去即可
具体来说,我们可以考虑用一个带修改主席树维护
因为主席树维护的是前缀和
如果按照一般思想,一个一个去更改太浪费时间了
我们想到,前缀和可以用树状数组的思想来维护
于是我们可以用树状数组的思想建主席树
于是每一次更改就可以减少到做$log n$次了
所以每一次删去一个数,我们就在主席树上插入这个数
要算答案时,只要减去$a1[i]$和$a2[i]$,再把删除的数加回来就好了
只要在主席树上$[1,i-1]$区间中大于$val[i]$的数的个数和$[i+1,n]$区间中小于$val[i]$的数的个数即可
//minamoto
#include<bits/stdc++.h>
#define N 100005
#define M 5000005
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline ll read(){
#define num ch-'0'
char ch;bool flag=;ll res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
char obuf[<<],*o=obuf;
void print(ll x){
if(x>) print(x/);
*o++=x%+;
}
int L[M],R[M],sum[M],rt[N];
int val[N],pos[N],xx[N],yy[N],c[N],a1[N],a2[N];
int n,cnt,q;ll ans=;
inline int lowbit(int x){return x&(-x);}
int ask(int x){
int s=;
for(int i=x;i;i-=lowbit(i)) s+=c[i];
return s;
}
void update(int &now,int l,int r,int k){
if(!now) now=++cnt;
++sum[now];
if(l==r) return;
int mid=(l+r)>>;
if(k<=mid) update(L[now],l,mid,k);
else update(R[now],mid+,r,k);
}
int querysub(int x,int y,int v){
int cntx=,cnty=,ans=;--x;
for(int i=x;i;i-=lowbit(i)) xx[++cntx]=rt[i];
for(int i=y;i;i-=lowbit(i)) yy[++cnty]=rt[i];
int l=,r=n;
while(l<r){
int mid=(l+r)>>;
if(v<=mid){
for(int i=;i<=cntx;++i) ans-=sum[R[xx[i]]];
for(int i=;i<=cnty;++i) ans+=sum[R[yy[i]]];
for(int i=;i<=cntx;++i) xx[i]=L[xx[i]];
for(int i=;i<=cnty;++i) yy[i]=L[yy[i]];
r=mid;
}
else{
for(int i=;i<=cntx;++i) xx[i]=R[xx[i]];
for(int i=;i<=cnty;++i) yy[i]=R[yy[i]];
l=mid+;
}
}
return ans;
}
int querypre(int x,int y,int v){
int cntx=,cnty=,ans=;--x;
for(int i=x;i;i-=lowbit(i)) xx[++cntx]=rt[i];
for(int i=y;i;i-=lowbit(i)) yy[++cnty]=rt[i];
int l=,r=n;
while(l<r){
int mid=(l+r)>>;
if(v>mid){
for(int i=;i<=cntx;++i) ans-=sum[L[xx[i]]];
for(int i=;i<=cnty;++i) ans+=sum[L[yy[i]]];
for(int i=;i<=cntx;++i) xx[i]=R[xx[i]];
for(int i=;i<=cnty;++i) yy[i]=R[yy[i]];
l=mid+;
}
else{
for(int i=;i<=cntx;++i) xx[i]=L[xx[i]];
for(int i=;i<=cnty;++i) yy[i]=L[yy[i]];
r=mid;
}
}
return ans;
}
int main(){
//freopen("testdata.in","r",stdin);
n=read(),q=read();
for(int i=;i<=n;++i){
val[i]=read(),pos[val[i]]=i;
a1[i]=ask(n)-ask(val[i]);
ans+=a1[i];
for(int j=val[i];j<=n;j+=lowbit(j)) ++c[j];
}
memset(c,,sizeof(c));
for(int i=n;i;--i){
a2[i]=ask(val[i]-);
for(int j=val[i];j<=n;j+=lowbit(j)) ++c[j];
}
while(q--){
print(ans),*o++='\n';
int x=read();x=pos[x];
ans-=(a1[x]+a2[x]-querysub(,x-,val[x])-querypre(x+,n,val[x]));
for(int j=x;j<=n;j+=lowbit(j)) update(rt[j],,n,val[x]);
}
fwrite(obuf,o-obuf,,stdout);
return ;
}
[BZOJ3295] [Cqoi2011]动态逆序对(带修改主席树)的更多相关文章
- [luogu3157][bzoj3295][CQOI2011]动态逆序对【cdq分治+树状数组】
题目描述 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序 ...
- 2018.07.01 BZOJ3295: [Cqoi2011]动态逆序对(带修主席树)
3295: [Cqoi2011]动态逆序对 **Time Limit: 10 Sec Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j& ...
- BZOJ3295: [Cqoi2011]动态逆序对(树状数组套主席树)
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 7465 Solved: 2662[Submit][Sta ...
- BZOJ3295 [Cqoi2011]动态逆序对 —— CDQ分治
题目链接:https://vjudge.net/problem/HYSBZ-3295 3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 1 ...
- bzoj3295 [Cqoi2011]动态逆序对 cdq+树状数组
[bzoj3295][Cqoi2011]动态逆序对 2014年6月17日4,7954 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数. ...
- bzoj3295: [Cqoi2011]动态逆序对(cdq分治+树状数组)
3295: [Cqoi2011]动态逆序对 题目:传送门 题解: 刚学完cdq分治,想起来之前有一道是树套树的题目可以用cdq分治来做...尝试一波 还是太弱了...想到了要做两次cdq...然后伏地 ...
- bzoj3295[Cqoi2011]动态逆序对 树套树
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 5987 Solved: 2080[Submit][Sta ...
- [BZOJ3295][Cqoi2011]动态逆序对 CDQ分治&树套树
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j,且 ...
- bzoj千题计划146:bzoj3295: [Cqoi2011]动态逆序对
http://www.lydsy.com/JudgeOnline/problem.php?id=3295 正着删除看做倒着添加 对答案有贡献的数对满足以下3个条件: 出现时间:i<=j 权值大小 ...
随机推荐
- volatile的内存语义
volatile的特性 理解volatile特性的一个好方法是把对volatile变量的单个读/写,堪称是使用同一个锁对这些单个读/写操作做了同步. 锁的happens-before规则保证释放锁和获 ...
- Java -- JDBC 学习--PreparedStatement
可以通过调用 Connection 对象的 preparedStatement() 方法获取 PreparedStatement 对象.PreparedStatement 接口是 Statement ...
- A1061. Dating
Sherlock Holmes received a note with some strange strings: "Let's date! 3485djDkxh4hhGE 2984akD ...
- 【LOJ#10154】选课
题目中所说的每门课都可能有先修课,也可能没有先修课,因此课与课之间的关系构成了一颗森林. 这种树上选择若干物品的最优解问题对应着树形背包问题. 阶段:子树的大小 状态:在当前子树中,选取 i 门课能够 ...
- HTTP/1.1 100 Continue - I 服了 You
今天用 c 的 socket() 模拟发送http请求:上传一张图片到服务器. 在本地测试,本地电脑: xp, iis5.1 经过半天时间对 http post file 协议的了解,代码已经写好,测 ...
- JSON必知必会,浅尝辄止的整理
在使用JSON时常见的安全漏洞通常发生在JavaScript从服务器获取到一段JSON字符串并将其转化为JavaScript对象时, 在定位JSON安全问题时,应该记住三件事情: 1.不要使用顶级数组 ...
- Qsort(c)_Sort(c++)用法
Sort函数(c) (来自codeblocks) stdlib.h _CRTIMP void __cdecl qsort(void*, size_t, size_t, int (*)(const vo ...
- mac subLime3 JSON 格式化插件安装
1.首先找到路径:/Users/hou***in/Library/Application' 'Support/Sublime' 'Text' '3/Packages/ 2.git clone http ...
- 论C++的发家史以及相对其他语言优缺
C++发家史: 最初导致C++诞生的原因是在Bjarne博士等人试图去分析UNIX的内核的时候,这项工作开始于1979年4月,当时由于没有合适的工具能够有效的分析由于内核分布而造成的网络流量,以及怎样 ...
- 超详细从零记录Hadoop2.7.3完全分布式集群部署过程
超详细从零记录Ubuntu16.04.1 3台服务器上Hadoop2.7.3完全分布式集群部署过程.包含,Ubuntu服务器创建.远程工具连接配置.Ubuntu服务器配置.Hadoop文件配置.Had ...