C - Triple Flips

思路:

小范围暴力

大范围递归构造

构造方法:

solve(l, r) 表示使l 到 r 区间全变为0的方法

为了使反转次数小于等于n/3 + 12

我们只需要保证每次反转后区间长度减少值的期望为3就可以了

如果a[l] == 0, l++

如果a[r] == 0, r--

如果a[l] == 1 && a[l+1] == 1 && a[l+2] == 1, 反转这三个就可以啦, l += 3

如果a[l] == 1 && a[l+1] == 0 && a[l+2] == 1, 反转l, l+2, l+4这三个, l += 3

如果a[l] == 1 && a[l+1] == 0 && a[l+1] == 0, 反转l, l+3, l+6这三个, l += 3

从右区间减少同理

否则只剩下这种情况了:

1 1 0 ...... 0 1 1

那么只需要根据区间长度的奇偶性

反转l , (l+r)/2, r 和 l+1 , (l+1+r-1)/2, r-1 或者 l, (l+r-1)/2, r-1 和 l+1 , (l+1+r)/2, r

然后 l += 3, r -= 3, 区间长度减少6

区间长度小于8的话就暴力

用二进制枚举所有的反转情况, 然后检查

代码:

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
//#define mp make_pair
#define pb push_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pli pair<LL, int>
#define pii pair<int, int>
#define piii pair<pii, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define fopen freopen("in.txt", "r", stdin);freopen("out.txt", "w", stout);
//head #define ck(l, x, y, z) a[l]==x&&a[l+1]==y&&a[l+2]==z
#define ckk(r, x, y, z) a[r]==x&&a[r-1]==y&&a[r-2]==z
const int N = 1e5 + ;
int a[N], tmp[N], n;
vector<piii> ans;
bool f = false;
void flip(int x, int y, int z) {
a[x] ^= ;
a[y] ^= ;
a[z] ^= ;
ans.pb({{x, y}, z});
}
void fflip(int x, int y) {
a[x] ^= ;
a[x+y>>] ^= ;
a[y] ^= ;
ans.pb({{x, x+y>>}, y});
}
void Flip(int x, int y) {
tmp[x] ^= ;
tmp[x+y>>] ^= ;
tmp[y] ^= ;
//ans.pb({{x, x+y>>1}, y});
}
void bruteforce(int l, int r) {
vector<pii> vc;
for (int i = l; i <= r; i++) {
for (int j = i+; j <= r; j += ) {
vc.pb({i, j});
}
}
int sz = vc.size();
for (int i = ; i < (<<sz); i++) {
for (int j = l; j <= r; j++) tmp[j] = a[j];
for (int j = ; j < sz; j++) {
if(i&(<<j)) {
Flip(vc[j].fi, vc[j].se);
}
}
bool ff = true;
for (int j = l; j <= r; j++) if(tmp[j]) {ff = false; break;}
if(ff) {
f = true;
for (int j = ; j < sz; j++) if(i&(<<j))ans.pb({{vc[j].fi, vc[j].fi + vc[j].se >> }, vc[j].se});
return ;
}
}
}
void solve(int l, int r) {
if(r - l + <= ) {
while(r-l+ < && l > ) l--;
while(r-l+ < && r < n) r++;
bruteforce(l, r);
return ;
}
if(a[l] == ) {
solve(l+, r);
return ;
}
if(a[r] == ) {
solve(l, r-);
return ;
}
if(ck(l, , , )) {
flip(l, l+, l+);
solve(l+, r);
return ;
}
if(ck(l, , , )) {
flip(l, l+, l+);
solve(l+, r);
return ;
}
if(ck(l, , , )) {
flip(l, l+, l+);
solve(l+, r);
return ;
}
if(ckk(r, , , )) {
flip(r, r-, r-);
solve(l, r-);
return ;
}
if(ckk(r, , , )) {
flip(r, r-, r-);
solve(l, r-);
return ;
}
if(ckk(r, , , )) {
flip(r, r-, r-);
solve(l, r-);
return ;
}
if((r-l+)&) {
fflip(l, r);
fflip(l+, r-);
solve(l+, r-);
return ;
}
else {
fflip(l, r-);
fflip(l+, r);
solve(l+, r-);
return ;
}
}
int main() {
int cnt = ;
scanf("%d", &n);
for (int i = ; i <= n; i++) scanf("%d", &a[i]);
solve(, n);
if(f) {
printf("YES\n");
printf("%d\n", (int)ans.size());
for (piii p : ans) printf("%d %d %d\n", p.fi.fi, p.fi.se, p.se);
}
else printf("NO\n");
return ;
}

Codeforces 1071 C - Triple Flips的更多相关文章

  1. Codeforces 1071C Triple Flips 构造

    原文链接 https://www.cnblogs.com/zhouzhendong/p/CF1071C.html 题目传送门 - CF1071C 题意 给定一个长度为 n 的 01 数列,限定你在 $ ...

  2. Codeforces1071C Triple Flips 【构造】【Four Russians】

    题目分析: 这种题目显然可以先考虑哪些无解.我们发现我们不考虑操作次数的时候,我们可以选择连续的三个进行异或操作. 这样我们总能使得一个序列转化为$000...000xy$的形式.换句话说,对于$00 ...

  3. [CF1031E]Triple Flips

    题目大意:给你一个长度为$n$的$01$串,一次操作定义为:选取$3$个等距的元素,使其$0$变$1$,$1$变$0$,要求在$\Big\lfloor \dfrac n 3\Big\rfloor+12 ...

  4. Codeforces Round #517

    传送门 A. Cram Time 你有一本书,阅读第\(i\)页需要花费\(i\)的时间.你第一天有\(a\)的时间,第二天有\(b\)的时间,问你的总阅读页数的最大值. Input: 一行包含\(2 ...

  5. Technocup 2019 - Elimination Round 2

    http://codeforces.com/contest/1031 (如果感觉一道题对于自己是有难度的,不要后退,懂0%的时候敲一遍,边敲边想,懂30%的时候敲一遍,边敲边想,懂60%的时候敲一遍, ...

  6. Codeforces 1119H - Triple(FWT)

    Codeforces 题目传送门 & 洛谷题目传送门 FWT 的 immortal tea %%% 首先我们可以写出一个朴素的 \(dp\),设 \(dp_{i,j}\) 表示考虑前 \(i\ ...

  7. Good Triple CodeForces - 1169D (等差子序列)

    大意: 给定01字符串, 求有多少个区间$[l,r]$, 使得存在正整数$x,k$满足$1\le x,k\le n,l\le x<x+2k\le r,s_x=s_{x+k}=s_{x+2k}$. ...

  8. CodeForces 304C

    E - E Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Submit Statu ...

  9. Codeforces Round #368 (Div. 2) C. Pythagorean Triples(数学)

    Pythagorean Triples 题目链接: http://codeforces.com/contest/707/problem/C Description Katya studies in a ...

随机推荐

  1. Golang利用select和普通函数分别实现斐波那契数列

    //斐波那契数列 //1 1 2 3 5 8 //观察规律 //第一轮:前两个数是1,1,相加等于2 //第二轮:第二个数和第三个数是1,2,相加等于3 //第三轮:第三个数和第四个数是2,3,相加等 ...

  2. P1290 欧几里德的游戏

    P1290 欧几里德的游戏 原本不想写的,但细节有些多qwq,还是放上吧. 假设a严格大于b 当a<b*2时,只有一种方法往下走:否则就可以有多种方法,并且一定至少有一种可以使自己必胜,因为可以 ...

  3. ORA-00600: internal error code, arguments: [13030], [20]一例解决

    两年没有接触oracle了,中午,一环境update from的时候出现ORA-00600: internal error code, arguments: [13030], [20]异常,经查,官网 ...

  4. 搭建ldap服务器及web管理服务--phpldapadmin

    系统版本:centos6 安装配置openldap: yum install openldap openldap-servers openldap-clients openldap-devel com ...

  5. opencv学习之路(9)、对比度亮度调整与通道分离

    一.对比度亮度调整 #include<opencv2/opencv.hpp> using namespace cv; #define WIN_NAME "输出图像" M ...

  6. topcoder srm list

    300 305 310 315 320 325 330 335 340 350 360 370 380 390 400 410 415 420 425 430 435 440 445 450 455 ...

  7. Spring 学习——Spring JSR注解——@Resoure、@PostConstruct、@PreDestroy、@Inject、@Named

    JSR 定义:JSR是Java Specification Requests的缩写,意思是Java 规范提案.是指向JCP(Java Community Process)提出新增一个标准化技术规范的正 ...

  8. FireMonkey 源码学习(5)

    (5)UpdateCharRec 该函数的源码分析如下: procedure TTextLayoutNG.UpdateCharRec(const ACanvas: TCanvas; NeedBitma ...

  9. 在fedora23中安装virtualbox, 然后实现虚拟机irtualbox 或者 vmware 下的xp操作系统

    参考: http://blog.csdn.net/statdm/article/details/7756788 参考: http://www.cnblogs.com/fengbohello/p/488 ...

  10. .NET Standard vs. .NET Core

    What is the difference between .NET Core and .NET Standard Class Library project types? Answer1 When ...