【Hadoop学习之十三】MapReduce案例分析五-ItemCF
环境
虚拟机:VMware 10
Linux版本:CentOS-6.5-x86_64
客户端:Xshell4
FTP:Xftp4
jdk8
hadoop-3.1.1
推荐系统——协同过滤(Collaborative Filtering)算法
ItemCF:基于item的协同过滤,通过用户对不同item的评分来评测item之间的相似性,基于item之间的相似性做出推荐。简单来讲就是:给用户推荐和他之前喜欢的物品相似的物品。
Co-occurrence Matrix(同现矩阵)和User Preference Vector(用户评分向量)相乘得到的这个Recommended Vector(推荐向量)
基于全量数据的统计,产生同现矩阵
·体现商品间的关联性
·每件商品都有自己对其他全部商品的关联性(每件商品的特征)
用户评分向量体现的是用户对一些商品的评分
任一商品需要:
·用户评分向量乘以基于该商品的其他商品关联值
·求和得出针对该商品的推荐向量
·排序取TopN即可
通过历史订单交易记录
计算得出每一件商品相对其他商品同时出现在同一订单的次数
·so:每件商品都有自己相对全部商品的同现列表
用户会对部分商品有过加入购物车,购买等实际操作,经过计算会得到用户对这部分商品的评分向量列表
使用用户评分向量列表中的分值:
·依次乘以每一件商品同现列表中该分值的代表物品的同现值
·求和便是该物品的推荐向量
package test.mr.itemcf; import java.util.HashMap;
import java.util.Map; import org.apache.hadoop.conf.Configuration; public class StartRun { public static void main(String[] args) {
Configuration conf = new Configuration(); conf.set("mapreduce.app-submission.corss-paltform", "true");
conf.set("mapreduce.framework.name", "local"); //所有mr的输入和输出目录定义在map集合中
Map<String, String> paths = new HashMap<String, String>();
paths.put("Step1Input", "/data/itemcf/input/");
paths.put("Step1Output", "/data/itemcf/output/step1");
paths.put("Step2Input", paths.get("Step1Output"));
paths.put("Step2Output", "/data/itemcf/output/step2");
paths.put("Step3Input", paths.get("Step2Output"));
paths.put("Step3Output", "/data/itemcf/output/step3");
paths.put("Step4Input1", paths.get("Step2Output"));
paths.put("Step4Input2", paths.get("Step3Output"));
paths.put("Step4Output", "/data/itemcf/output/step4");
paths.put("Step5Input", paths.get("Step4Output"));
paths.put("Step5Output", "/data/itemcf/output/step5");
paths.put("Step6Input", paths.get("Step5Output"));
paths.put("Step6Output", "/data/itemcf/output/step6"); Step1.run(conf, paths);
Step2.run(conf, paths);
// Step3.run(conf, paths);
// Step4.run(conf, paths);
// Step5.run(conf, paths);
// Step6.run(conf, paths);
} public static Map<String, Integer> R = new HashMap<String, Integer>();
static {
R.put("click", 1);
R.put("collect", 2);
R.put("cart", 3);
R.put("alipay", 4);
}
}
package test.mr.itemcf; import java.io.IOException;
import java.util.Map; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /**
* 去重复
* @author root
*
*/
public class Step1 { public static boolean run(Configuration config,Map<String, String> paths){
try {
FileSystem fs =FileSystem.get(config);
Job job =Job.getInstance(config);
job.setJobName("step1");
job.setJarByClass(Step1.class);
job.setMapperClass(Step1_Mapper.class);
job.setReducerClass(Step1_Reducer.class); job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(NullWritable.class); FileInputFormat.addInputPath(job, new Path(paths.get("Step1Input")));
Path outpath=new Path(paths.get("Step1Output"));
if(fs.exists(outpath)){
fs.delete(outpath,true);
}
FileOutputFormat.setOutputPath(job, outpath); boolean f= job.waitForCompletion(true);
return f;
} catch (Exception e) {
e.printStackTrace();
}
return false;
} static class Step1_Mapper extends Mapper<LongWritable, Text, Text, NullWritable>{ protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
if(key.get()!=0){
context.write(value, NullWritable.get());
}
}
} static class Step1_Reducer extends Reducer<Text, IntWritable, Text, NullWritable>{ protected void reduce(Text key, Iterable<IntWritable> i, Context context)
throws IOException, InterruptedException {
context.write(key,NullWritable.get());
}
}
}
package test.mr.itemcf; import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /**
* 按用户分组,计算所有物品出现的组合列表,得到用户对物品的喜爱度得分矩阵
u13 i160:1,
u14 i25:1,i223:1,
u16 i252:1,
u21 i266:1,
u24 i64:1,i218:1,i185:1,
u26 i276:1,i201:1,i348:1,i321:1,i136:1,
* @author root
*
*/
public class Step2 { public static boolean run(Configuration config,Map<String, String> paths){
try {
FileSystem fs =FileSystem.get(config);
Job job =Job.getInstance(config);
job.setJobName("step2");
job.setJarByClass(StartRun.class);
job.setMapperClass(Step2_Mapper.class);
job.setReducerClass(Step2_Reducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class); FileInputFormat.addInputPath(job, new Path(paths.get("Step2Input")));
Path outpath=new Path(paths.get("Step2Output"));
if(fs.exists(outpath)){
fs.delete(outpath,true);
}
FileOutputFormat.setOutputPath(job, outpath); boolean f= job.waitForCompletion(true);
return f;
} catch (Exception e) {
e.printStackTrace();
}
return false;
} static class Step2_Mapper extends Mapper<LongWritable, Text, Text, Text>{ //如果使用:用户+物品,同时作为输出key,更优
//i161,u2625,click,2014/9/18 15:03
protected void map(LongWritable key, Text value,
Context context)
throws IOException, InterruptedException {
String[] tokens=value.toString().split(",");
String item=tokens[0];
String user=tokens[1];
String action =tokens[2];
Text k= new Text(user);
Integer rv =StartRun.R.get(action);
Text v =new Text(item+":"+ rv.intValue());
context.write(k, v);
//u2625 i161:1
}
} static class Step2_Reducer extends Reducer<Text, Text, Text, Text>{ protected void reduce(Text key, Iterable<Text> i,
Context context)
throws IOException, InterruptedException {
Map<String, Integer> r =new HashMap<String, Integer>();
//u2625
// i161:1
// i161:2
// i161:4
// i162:3
// i161:4
for(Text value :i){
String[] vs =value.toString().split(":");
String item=vs[0];
Integer action=Integer.parseInt(vs[1]);
action = ((Integer) (r.get(item)==null? 0:r.get(item))).intValue() + action;
r.put(item,action);
}
StringBuffer sb =new StringBuffer();
for(Entry<String, Integer> entry :r.entrySet() ){
sb.append(entry.getKey()+":"+entry.getValue().intValue()+",");
} context.write(key,new Text(sb.toString()));
}
}
}
package test.mr.itemcf; import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.MapWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.log4j.Logger;
/**
* 对物品组合列表进行计数,建立物品的同现矩阵
i100:i100 3
i100:i105 1
i100:i106 1
i100:i109 1
i100:i114 1
i100:i124 1
* @author root
*
*/
public class Step3 {
private final static Text K = new Text();
private final static IntWritable V = new IntWritable(1); public static boolean run(Configuration config,Map<String, String> paths){
try {
FileSystem fs =FileSystem.get(config);
Job job =Job.getInstance(config);
job.setJobName("step3");
job.setJarByClass(StartRun.class);
job.setMapperClass(Step3_Mapper.class);
job.setReducerClass(Step3_Reducer.class);
job.setCombinerClass(Step3_Reducer.class);
//
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(paths.get("Step3Input")));
Path outpath=new Path(paths.get("Step3Output"));
if(fs.exists(outpath)){
fs.delete(outpath,true);
}
FileOutputFormat.setOutputPath(job, outpath); boolean f= job.waitForCompletion(true);
return f;
} catch (Exception e) {
e.printStackTrace();
}
return false;
} static class Step3_Mapper extends Mapper<LongWritable, Text, Text, IntWritable>{ protected void map(LongWritable key, Text value,
Context context)
throws IOException, InterruptedException { //u3244 i469:1,i498:1,i154:1,i73:1,i162:1,
String[] tokens=value.toString().split("\t");
String[] items =tokens[1].split(",");
for (int i = 0; i < items.length; i++) {
String itemA = items[i].split(":")[0];
for (int j = 0; j < items.length; j++) {
String itemB = items[j].split(":")[0];
K.set(itemA+":"+itemB);
context.write(K, V);
}
} }
} static class Step3_Reducer extends Reducer<Text, IntWritable, Text, IntWritable>{ protected void reduce(Text key, Iterable<IntWritable> i,
Context context)
throws IOException, InterruptedException {
int sum =0;
for(IntWritable v :i ){
sum =sum+v.get();
}
V.set(sum);
context.write(key, V);
}
} }
package test.mr.itemcf; import java.io.IOException;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
import java.util.StringTokenizer;
import java.util.regex.Pattern; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.MapWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import org.apache.log4j.Logger; /**
*
* 把同现矩阵和得分矩阵相乘
* @author root
*
*/
public class Step4 { public static boolean run(Configuration config, Map<String, String> paths) {
try {
FileSystem fs = FileSystem.get(config);
Job job = Job.getInstance(config);
job.setJobName("step4");
job.setJarByClass(StartRun.class);
job.setMapperClass(Step4_Mapper.class);
job.setReducerClass(Step4_Reducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class); // FileInputFormat.addInputPath(job, new
// Path(paths.get("Step4Input")));
FileInputFormat.setInputPaths(job,
new Path[] { new Path(paths.get("Step4Input1")),
new Path(paths.get("Step4Input2")) });
Path outpath = new Path(paths.get("Step4Output"));
if (fs.exists(outpath)) {
fs.delete(outpath, true);
}
FileOutputFormat.setOutputPath(job, outpath); boolean f = job.waitForCompletion(true);
return f;
} catch (Exception e) {
e.printStackTrace();
}
return false;
} static class Step4_Mapper extends Mapper<LongWritable, Text, Text, Text> {
private String flag;// A同现矩阵 or B得分矩阵 //每个maptask,初始化时调用一次
protected void setup(Context context) throws IOException,
InterruptedException {
FileSplit split = (FileSplit) context.getInputSplit();
flag = split.getPath().getParent().getName();// 判断读的数据集 System.out.println(flag + "**********************");
} protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String[] tokens = Pattern.compile("[\t,]").split(value.toString());
if (flag.equals("step3")) {// 同现矩阵
//i100:i125 1
String[] v1 = tokens[0].split(":");
String itemID1 = v1[0];
String itemID2 = v1[1];
String num = tokens[1];
//A:B 3
//B:A 3
Text k = new Text(itemID1);// 以前一个物品为key 比如i100
Text v = new Text("A:" + itemID2 + "," + num);// A:i109,1 context.write(k, v); } else if (flag.equals("step2")) {// 用户对物品喜爱得分矩阵 //u26 i276:1,i201:1,i348:1,i321:1,i136:1,
String userID = tokens[0];
for (int i = 1; i < tokens.length; i++) {
String[] vector = tokens[i].split(":");
String itemID = vector[0];// 物品id
String pref = vector[1];// 喜爱分数 Text k = new Text(itemID); // 以物品为key 比如:i100
Text v = new Text("B:" + userID + "," + pref); // B:u401,2 context.write(k, v);
}
}
}
} static class Step4_Reducer extends Reducer<Text, Text, Text, Text> {
protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
// A同现矩阵 or B得分矩阵
//某一个物品,针对它和其他所有物品的同现次数,都在mapA集合中
Map<String, Integer> mapA = new HashMap<String, Integer>();// 和该物品(key中的itemID)同现的其他物品的同现集合// 。其他物品ID为map的key,同现数字为值
Map<String, Integer> mapB = new HashMap<String, Integer>();// 该物品(key中的itemID),所有用户的推荐权重分数。 //A > reduce 相同的KEY为一组
//value:2类:
//物品同现A:b:2 c:4 d:8
//评分数据B:u1:18 u2:33 u3:22
for (Text line : values) {
String val = line.toString();
if (val.startsWith("A:")) {// 表示物品同现数字
// A:i109,1
String[] kv = Pattern.compile("[\t,]").split(
val.substring(2));
try {
mapA.put(kv[0], Integer.parseInt(kv[1]));
//物品同现A:b:2 c:4 d:8
//基于 A,物品同现次数
} catch (Exception e) {
e.printStackTrace();
} } else if (val.startsWith("B:")) {
// B:u401,2
String[] kv = Pattern.compile("[\t,]").split(
val.substring(2));
//评分数据B:u1:18 u2:33 u3:22
try {
mapB.put(kv[0], Integer.parseInt(kv[1]));
} catch (Exception e) {
e.printStackTrace();
}
}
} double result = 0;
Iterator<String> iter = mapA.keySet().iterator();//同现
while (iter.hasNext()) {
String mapk = iter.next();// itemID
int num = mapA.get(mapk).intValue(); //对于A的同现次数
Iterator<String> iterb = mapB.keySet().iterator();//评分
while (iterb.hasNext()) {
String mapkb = iterb.next();// userID
int pref = mapB.get(mapkb).intValue();
result = num * pref;// 矩阵乘法相乘计算 Text k = new Text(mapkb); //用户ID为key
Text v = new Text(mapk + "," + result);//基于A物品,其他物品的同现与评分(所有用户对A物品)乘机
context.write(k, v);
}
}
}
}
}
package test.mr.itemcf; import java.io.IOException;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
import java.util.StringTokenizer;
import java.util.regex.Pattern; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.MapWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import org.apache.log4j.Logger; /**
*
* 把相乘之后的矩阵相加获得结果矩阵
*
* @author root
*
*/
public class Step5 {
private final static Text K = new Text();
private final static Text V = new Text(); public static boolean run(Configuration config, Map<String, String> paths) {
try {
FileSystem fs = FileSystem.get(config);
Job job = Job.getInstance(config);
job.setJobName("step5");
job.setJarByClass(StartRun.class);
job.setMapperClass(Step5_Mapper.class);
job.setReducerClass(Step5_Reducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class); FileInputFormat
.addInputPath(job, new Path(paths.get("Step5Input")));
Path outpath = new Path(paths.get("Step5Output"));
if (fs.exists(outpath)) {
fs.delete(outpath, true);
}
FileOutputFormat.setOutputPath(job, outpath); boolean f = job.waitForCompletion(true);
return f;
} catch (Exception e) {
e.printStackTrace();
}
return false;
} static class Step5_Mapper extends Mapper<LongWritable, Text, Text, Text> { /**
* 原封不动输出
*/
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String[] tokens = Pattern.compile("[\t,]").split(value.toString());
Text k = new Text(tokens[0]);// 用户为key
Text v = new Text(tokens[1] + "," + tokens[2]);
context.write(k, v);
}
} static class Step5_Reducer extends Reducer<Text, Text, Text, Text> {
protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
Map<String, Double> map = new HashMap<String, Double>();// 结果 //u3 > reduce
//101, 11
//101, 12
//101, 8
//102, 12
//102, 32 for (Text line : values) {// i9,4.0
String[] tokens = line.toString().split(",");
String itemID = tokens[0];
Double score = Double.parseDouble(tokens[1]); if (map.containsKey(itemID)) {
map.put(itemID, map.get(itemID) + score);// 矩阵乘法求和计算
} else {
map.put(itemID, score);
}
} Iterator<String> iter = map.keySet().iterator();
while (iter.hasNext()) {
String itemID = iter.next();
double score = map.get(itemID);
Text v = new Text(itemID + "," + score);
context.write(key, v);
}
} }
}
package test.mr.itemcf; import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import java.util.regex.Pattern; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /**
*
* 按照推荐得分降序排序,每个用户列出10个推荐物品
*
* @author root
*
*/
public class Step6 {
private final static Text K = new Text();
private final static Text V = new Text(); public static boolean run(Configuration config, Map<String, String> paths) {
try {
FileSystem fs = FileSystem.get(config);
Job job = Job.getInstance(config);
job.setJobName("step6");
job.setJarByClass(StartRun.class);
job.setMapperClass(Step6_Mapper.class);
job.setReducerClass(Step6_Reducer.class);
job.setSortComparatorClass(NumSort.class);
job.setGroupingComparatorClass(UserGroup.class);
job.setMapOutputKeyClass(PairWritable.class);
job.setMapOutputValueClass(Text.class); FileInputFormat
.addInputPath(job, new Path(paths.get("Step6Input")));
Path outpath = new Path(paths.get("Step6Output"));
if (fs.exists(outpath)) {
fs.delete(outpath, true);
}
FileOutputFormat.setOutputPath(job, outpath); boolean f = job.waitForCompletion(true);
return f;
} catch (Exception e) {
e.printStackTrace();
}
return false;
} static class Step6_Mapper extends Mapper<LongWritable, Text, PairWritable, Text> { protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String[] tokens = Pattern.compile("[\t,]").split(value.toString());
String u = tokens[0];
String item = tokens[1];
String num = tokens[2];
PairWritable k =new PairWritable();
k.setUid(u);
k.setNum(Double.parseDouble(num));
V.set(item+":"+num);
context.write(k, V); }
} static class Step6_Reducer extends Reducer<PairWritable, Text, Text, Text> {
protected void reduce(PairWritable key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
int i=0;
StringBuffer sb =new StringBuffer();
for(Text v :values){
if(i==10)
break;
sb.append(v.toString()+",");
i++;
}
K.set(key.getUid());
V.set(sb.toString());
context.write(K, V);
} } static class PairWritable implements WritableComparable<PairWritable>{ // private String itemId;
private String uid;
private double num;
public void write(DataOutput out) throws IOException {
out.writeUTF(uid);
// out.writeUTF(itemId);
out.writeDouble(num);
} public void readFields(DataInput in) throws IOException {
this.uid=in.readUTF();
// this.itemId=in.readUTF();
this.num=in.readDouble();
} public int compareTo(PairWritable o) {
int r =this.uid.compareTo(o.getUid());
if(r==0){
return Double.compare(this.num, o.getNum());
}
return r;
} public String getUid() {
return uid;
} public void setUid(String uid) {
this.uid = uid;
} public double getNum() {
return num;
} public void setNum(double num) {
this.num = num;
} } static class NumSort extends WritableComparator{
public NumSort(){
super(PairWritable.class,true);
} public int compare(WritableComparable a, WritableComparable b) {
PairWritable o1 =(PairWritable) a;
PairWritable o2 =(PairWritable) b; int r =o1.getUid().compareTo(o2.getUid());
if(r==0){
return -Double.compare(o1.getNum(), o2.getNum());
}
return r;
}
} static class UserGroup extends WritableComparator{
public UserGroup(){
super(PairWritable.class,true);
} public int compare(WritableComparable a, WritableComparable b) {
PairWritable o1 =(PairWritable) a;
PairWritable o2 =(PairWritable) b;
return o1.getUid().compareTo(o2.getUid());
}
}
}
【Hadoop学习之十三】MapReduce案例分析五-ItemCF的更多相关文章
- 【Hadoop学习之十二】MapReduce案例分析四-TF-IDF
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 概念TF-IDF(term fre ...
- 【Hadoop学习之十】MapReduce案例分析二-好友推荐
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 最应该推荐的好友TopN,如何排名 ...
- 【Hadoop学习之九】MapReduce案例分析一-天气
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 找出每个月气温最高的2天 1949 ...
- 【Hadoop学习之十一】MapReduce案例分析三-PageRank
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 什么是pagerank?算法原理- ...
- Hadoop学习笔记—20.网站日志分析项目案例(二)数据清洗
网站日志分析项目案例(一)项目介绍:http://www.cnblogs.com/edisonchou/p/4449082.html 网站日志分析项目案例(二)数据清洗:当前页面 网站日志分析项目案例 ...
- Hadoop学习笔记—20.网站日志分析项目案例
1.1 项目来源 本次要实践的数据日志来源于国内某技术学习论坛,该论坛由某培训机构主办,汇聚了众多技术学习者,每天都有人发帖.回帖,如图1所示. 图1 项目来源网站-技术学习论坛 本次实践的目的就在于 ...
- Hadoop学习笔记—20.网站日志分析项目案例(一)项目介绍
网站日志分析项目案例(一)项目介绍:当前页面 网站日志分析项目案例(二)数据清洗:http://www.cnblogs.com/edisonchou/p/4458219.html 网站日志分析项目案例 ...
- Hadoop学习笔记—20.网站日志分析项目案例(三)统计分析
网站日志分析项目案例(一)项目介绍:http://www.cnblogs.com/edisonchou/p/4449082.html 网站日志分析项目案例(二)数据清洗:http://www.cnbl ...
- Hadoop学习之路(二十五)MapReduce的API使用(二)
学生成绩---增强版 数据信息 computer,huangxiaoming,85,86,41,75,93,42,85 computer,xuzheng,54,52,86,91,42 computer ...
随机推荐
- 20165336 学习基础与C语言基础调查
20165336 技能学习心得与c语言学习 一.心得体会 做教练 从老师的健身教练健身学员的学习关系中我懂得了学生应该有自主的学习意识,要有计划地去训练.去流汗,并且要以100分的要求严于律己,老师是 ...
- golang的json数据解析
import ( "fmt" "time" "github.com/astaxie/beego" " ...
- 类的copy和deepcopy
- (instancetype)initWithName:(NSString *)name age:(NSUInteger)age sex:(CYLSex)sex { if(self = [super ...
- OC UITextField只允许输入两位小数
//只能输入两位小数 - (BOOL)textField:(UITextField *)textField shouldChangeCharactersInRange:(NSRange)range r ...
- Hyperledger Fabric CA的命令行用法
介绍Hyperledger Fabric CA的命令行方式简单用法 Hyperledger Fabric CA由server和client两部分组成. 设置两个环境变量 export FABRIC_C ...
- maven install安装工程
在一个项目中,想要运行一个子工程,要先把它的依赖工程导入到maven中. 右键依赖工程--run as--maven install.
- 10.26 配置psplkf小程序
环境 服务器 Win Server 2008,nginx, maven, psplkf 标准的mvn工程,可以使用eclipse,导入,file-import-maven project就行, 但是我 ...
- k8s 健康检查
livenessProbe: exec: command: - /bin/sh - '-c' - /opt/app-root/src/check_conf.sh failureThreshold: 3 ...
- TVTK安装
首先感觉到的一点就是在https://www.lfd.uci.edu/~gohlke/pythonlibs/#chaco这个比较受欢迎的下载Python库的网站上下载大于20mb的whl文件时就很可能 ...
- node-express根据请求,判断PC和移动端
function getMachine(req) { var deviceAgent = req.headers["user-agent"].toLowerCase(); var ...