线性素数筛 ACM-ICPC 2018 南京赛区网络预赛 J Sum
https://www.jisuanke.com/contest/1555?view=challenges
题意:
题解:写完都没发现是个积性函数233
想法就是对x分解质因数,f(x)就是2^k,其中k是x分解结果中次数为一的质因子个数。如果有某个次数大于等于3,f(x)==0;
这样明显会TLE
所以就想一个递推的方法。
于是魔改了一下线性筛。
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<iomanip>
#include<queue>
#include<map>
#include<bitset>
#include<stack>
#include<vector>
#include<set>
using namespace std;
#define MAXN 1010
#define MAXM 1010
#define INF 1000000000
#define MOD 1000000007
#define ll long long
#define eps 5e-6
ll n, N;
#define rep(i,t,n) for(int i =(t);i<=(n);++i)
#define per(i,n,t) for(int i =(n);i>=(t);--i)
#define mmm(a,b) memset(a,b,sizeof(a))
const int maxn=2e7+1e5; int num = ;
int vis[maxn], pri[maxn];
ll f[maxn];
ll s[maxn];
void init() {
rep(i, , maxn)f[i] = ;
mmm(vis, );
mmm(pri, );
num = ;
}
void getpri() {
for ( ll i = ; i<N; i++) {
if (!vis[i])pri[++num] = i,f[i]=;
for ( ll j = ; j <= num && pri[j] * i<N; j++) {
vis[pri[j] * i] = ;
f[pri[j] * i] *= f[pri[j]]*f[i];
if (i%pri[j] == ) { //二次方
f[pri[j] * i] /= ;
if (i%(pri[j] * pri[j]) == )f[pri[j] * i] = ;//三次方以上
break;
}//如果i遇到了自己最小的质因子就直接跳出
}
}
}
int main() {
int t;
cin >> t;
int x = maxn;
N = maxn;
init();
getpri();
s[] = ;
rep(i, , x) {
s[i] =s[i-]+ f[i];
}
while (t--)
{
cin >> n;
cout << s[n]<< endl;
}
//cin >> t;
return ;
}
/*
1
8
20000000
2
5
8 */
线性素数筛 ACM-ICPC 2018 南京赛区网络预赛 J Sum的更多相关文章
- ACM-ICPC 2018 南京赛区网络预赛 J.sum
A square-free integer is an integer which is indivisible by any square number except 11. For example ...
- ACM-ICPC 2018 南京赛区网络预赛 J.sum(欧拉筛)
题目来源:https://nanti.jisuanke.com/t/A1956 题意:找一个数拆成无平方因子的组合数,然后求前缀和. 解题思路:我们可以把某个数分解质因数,如果某个数可以分解出三个相同 ...
- ACM-ICPC 2018 南京赛区网络预赛 J Sum (思维+打表)
https://nanti.jisuanke.com/t/30999 题意 f(i)表示i能拆分成两个数的乘积,且要求这两个数中各自都没有出现超过1次的质因子的方案数.每次给出n,求∑(n,i=1)f ...
- ACM-ICPC 2018 南京赛区网络预赛 - J. Sum (找规律+打表)
题意:\(f(i):i\)能拆分成两个数的乘积,且要求这两个数中各自都没有出现超过1次的质因子.每次给出n,求\(\sum_{i=1}^{n}f(i)\) 分析:\(1 \le n \le 2e7\) ...
- ACM-ICPC 2018 南京赛区网络预赛 J sum (找一个数拆成两个无平方因子的组合数)
题目大意:就是找一个数拆成两个无平方因子的组合数,然后求个前缀和 ; 分析:运用筛法的思想 , 因为有序对是由两个合法的数字组成的,所以只要保证第一个数合法,第二个数也合法就行,找出合法的第二个数 ...
- 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)
J. Sum 26.87% 1000ms 512000K A square-free integer is an integer which is indivisible by any squar ...
- ACM-ICPC 2018 南京赛区网络预赛 J题Sum(线性筛素数)
题目链接:https://nanti.jisuanke.com/t/30999 参考自博客:https://kuangbin.github.io/2018/09/01/2018-ACM-ICPC-Na ...
- 【ACM-ICPC 2018 南京赛区网络预赛 J】Sum
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 线性筛求出每个数的最小质因子x for 从1-n 对于i,它的最小质因子为x 考虑i=ab 如果i能被x^3整除 那么这x怎么分配给 ...
- ACM-ICPC 2018 南京赛区网络预赛(12/12)
ACM-ICPC 2018 南京赛区网络预赛 A. An Olympian Math Problem 计算\(\sum_{i=1}^{n-1}i\cdot i!(MOD\ n)\) \(\sum_{i ...
随机推荐
- Swift 同构与异构
1.数据源中的同构与异构 对于 Swift 的集合数据来说,有同构和异构之分. 如果你需要讨论一群鸟类或者一批飞机,那么这样的数据是同构的,比如包含鸟类的数组 [Bird] 和包含飞机的数组 [Air ...
- 【Java】数组不能通过toString方法转为字符串
java里,所有的类,不管是java库里面的类,或者是你自己创建的类,全部是从object这个类继承的.object里有一个方法就是toString(),那么所有的类创建的时候,都有一个toStrin ...
- tsung -- 压力测试利器
Tsung 是一个压力测试工具,可以测试包括HTTP, WebDAV, PostgreSQL, MySQL, LDAP, and XMPP/Jabber等服务器.针对 HTTP 测试,Tsung 支持 ...
- Effective Java 第三版——61. 基本类型优于装箱的基本类型
Tips 书中的源代码地址:https://github.com/jbloch/effective-java-3e-source-code 注意,书中的有些代码里方法是基于Java 9 API中的,所 ...
- Git教程学习(一)
教程来自: Git教程(廖雪峰的官方网站) 学习Git的基本内容,对教程内容进行理解并脱水 1. Git简介 2. 安装Git 1. ubuntu上安装Git $ sudo apt-get insta ...
- npm和yarn的使用对比
NPM YARN 说明 npm init yarn init 初始化某个项目 npm install/link yarn install/link 默认的安装依赖操作 npm install taco ...
- Why you should use async tasks in .NET 4.5 and Entity Framework 6
Improve response times and handle more users with parallel processing Building a web application usi ...
- Nginx 实现负载均衡
.安装nginx和tomcat 我这里是使用docker安装的.安装流程可参照 dockerfile 这里安装了两个tomcat,端口分别是42000和42001.第二个tomcat的首页随便加了些代 ...
- GoLang之strings、buffers、bytes、binary包
strings包 strings包的使用举例: package main import s "strings" import "fmt" var p = fmt ...
- 使用Three.js里的各种光源
1.three.js库提供的光源 three.js库提供了一些列光源,而且没种光源都有特定的行为和用途.这些光源包括: 光源名称/描述 AmbientLight(环境光)/这是一种基础光源,它的颜色会 ...