poj1160
题目大意:在一个一维坐标轴上有v个(1<=v<=300)村庄,要建p(1<=p<=30)个邮局,每个村庄都到最近的邮局,要求最小的距离和。
四边形不等式,据说黑书上写得很高深。
描述是这样的:令(a<=b<=c<=d,i<=k<j),若w[a][c]+w[b][d]<=w[a][d]+w[b][c],m[i][j]=min OR max{m[i][k]+m[k+1][j]+w[i][j]}则m[a][c]+m[b][d]<=m[a][d]+m[b][c]。
对于这个式子,个人觉得没必要深究,读者读读题目就应该知道自己要求的m[i][j]定义,取min或者max。我也不会证明,只能弱弱感受到是这么回事。(毕竟那些都不重要,因为不涉及最后求解结果)
最重要的是这个式子,假设s[i][j]是对应取到m[i][j]的最优解(s当然是solution的意思了,关于解的描述要细细考虑,因为它并不用是一种很确切的表示,只需要是一个关键的量就可以)。PS:我觉得,我要是不解释这个关键量,很多人肯定会黑我的,但是我真的不知道怎么表达。看代码中的注解吧。
四边形不等式最大优化是s[i][j]一定介于s[k=i-1 或者 k=i+1][j]、s[i][j+1]之间。(也有很多博客上写成s[i-1][j]<=s[i][j]<=s[i][j+1])这样对于我们搜索关于s[i][j]的值时范围大大缩短了。对于s[i][max_(i)]可以用我们通常容易想到的dp方程线性效率解决。而s[i][1]到s[i][max_(i)-1]这一段的解,总共的效率可以缩短到线性。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int infinity=(-)^(<<);
const int V=;
const int P=;
int dp[V][P], s[V][P];
int atx[V],sum[V];
inline int setat(int i,int j){
return (i+j)>>;
}
int move_all(int fr,int ba){
//printf("move from %d to %d = %d\n",fr,ba,(sum[ba]-sum[fr])-atx[fr]*(ba-fr));
return (sum[ba]-sum[fr])-atx[fr]*(ba-fr);
}
int S(int i,int j){
int pos=setat(i,j);
int ret=move_all(pos,j);
ret += (atx[pos]-atx[i])*(pos-i+)-move_all(i,pos);
return ret;
}
int DP(int v,int p){
sort(atx+,atx++v);
for(int i=v;i>=;i--) atx[i]-=atx[];
for(int i=;i<=v;i++) sum[i]=sum[i-]+atx[i];
//for(int i=1;i<=v;i++) printf("%3d ",atx[i]); printf("\n");
for(int i=;i<=v;i++)
dp[i][]=S(,i), s[i][]=setat(,i); //printf("1 --> %4d, %d\n",i,dp[i][1]);
if(p >= )
for(int i=;i<=v;i++){
int maxj=min(i,p);
dp[i][maxj]=infinity;
for(int k=maxj-;k<i;k++)
if(dp[k][maxj-]+S(k+,i) < dp[i][maxj])
dp[i][maxj]=dp[k][maxj-]+S(k+,i), s[i][maxj]=k;
//printf("dp[%d][%d] = %d, s[i][maxj] = %d\n",i,maxj,dp[i][maxj],s[i][maxj]);
for(int j=maxj-;j>=;j--){
dp[i][j]=infinity;
for(int k=s[i-][j];k<=s[i][j+];k++)
if(dp[k][j-]+S(k+,i) < dp[i][j]){
dp[i][j]=dp[k][j-]+S(k+,i);
s[i][j]=k;
}
}
}
return dp[v][p];
}
int main()
{
int v,p;
while(scanf("%d%d",&v,&p) != EOF){
for(int i=;i<=v;i++)
scanf("%d",&atx[i]);
printf("%d\n",DP(v,p));
}
return ;
}
个人觉得,在很多性质上,它跟斜率优化dp很像,甚至可以说斜率优化dp是最特殊的一类四边形不等式dp。斜率优化的dp中,最优化只根一个值有关,因为它保持后来无关单调。四边形不等式,把最优解的可选方案限制起来。
我也是四边形不等式的初学者,希望路过的大牛不吝赐教。
poj1160的更多相关文章
- 【poj1160】 Post Office
http://poj.org/problem?id=1160 (题目链接) 题意 按照递增顺序给出一条直线上坐标互不相同的n个村庄,要求从中选择p个村庄建立邮局,每个村庄使用离它最近的那个邮局,使得所 ...
- 石子合并(四边形不等式优化dp) POJ1160
该来的总是要来的———————— 经典问题,石子合并. 对于 f[i][j]= min{f[i][k]+f[k+1][j]+w[i][j]} From 黑书 凸四边形不等式:w[a][c]+w[b][ ...
- [poj1160][IOI2000]Post Office【动态规划】
传送门 https://vjudge.net/problem/POJ-1160#author=SCU2018 题目描述 在一条水平的公路上建有n个小屋,两个小屋间的距离是它们的横坐标之差的绝对值.保证 ...
- 区间DP POJ1160村庄邮局问题
POJ1160 题目大意:一系列村庄在一维坐标系上有序的排列,建设p个邮局,问各个村庄到邮局的最短距离和. 线性区间DP问题 dp数组的值为最短/最优距离 村庄和邮局为限制 dp[i][j]表示前i个 ...
- DP---基本思想 具体实现 经典题目 POJ1160 POJ1037
POJ1160, post office.动态规划的经典题目.呃,又是经典题目,DP部分的经典题目怎就这么多.木有办法,事实就这样. 求:在村庄内建邮局,要使村庄到邮局的距离和最小. 设有m个村庄,分 ...
- IOI2000 Post Office (POJ1160)
前言 昨天XY讲课!讲到这题!还是IOI的题!不过据说00年的时候DP还不流行. 题面 http://poj.org/problem?id=1160 分析 § 1 中位数 首先我们考虑,若有x1 & ...
- POJ1160 Post Office[序列DP]
Post Office Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 18680 Accepted: 10075 Des ...
- poj1160 dp
//Accepted 564 KB 63 ms //和hdu1227一样 //dp[i][j]=min(dp[i][j],dp[k][j-1]+cost[k+1][i]) //初始化条件,dp[0][ ...
- poj1160 post office
题目大意:有n个乡村,现在要建立m个邮局,邮局只能建在乡村里.现在要使每个乡村到离它最近的邮局距离的总和尽量小,求这个最小距离和. n<300,p<30,乡村的位置不超过10000. 分析 ...
随机推荐
- sql server中将一个表中的部分数据插入到另一个表中
可以通过存储过程完成,也可以通过在库名上右击“新建查询”执行.语句其实基本相同. 1. 存储过程: CREATE PROCEDURE pro1 as insert into tableB (field ...
- 模块化利器:RequireJS常用知识
1. 模块化 目前常见的模块化开发方式,全局空间方式是最基本的一种,另外常见的还有遵循AMD规范的开发方式,遵循CMD规范的开发方式,和ECMAScript 6的开发方式.需要说明的是,CMD和ES6 ...
- JNI加载Native Library 以及 跨线程和Qt通信
Part1 Java Native Interface-JNI-JAVA本地调用 JNI标准是Java平台的一部分, 允许Java代码和其他语言进行交互; 开始实现-> Step 1) 编写Ja ...
- C语言学习的经典书籍--转载
推荐前言: 原文出处:http://book.douban.com/doulist/338101/ 和其他语言相比(例如C++),C语言是一门比较“小”的语言,可以在较短的时间内入门.但是由于C的很强 ...
- scroll运用、图片悬浮
scroll 滚动条 长话短说进入正题: scrollTOP==0 内容置于顶部: scrollTOP()>=$(document).height-$(window).height 内容置于底部 ...
- c语言 文件写入和读取
#include<stdio.h> #include<stdlib.h> #include<string.h> #define N 10 struct studen ...
- Python urllib和urllib2模块学习(一)
(参考资料:现代魔法学院 http://www.nowamagic.net/academy/detail/1302803) Python标准库中有许多实用的工具类,但是在具体使用时,标准库文档上对使用 ...
- Linux04--文本编辑器vim
1.Linux系统下常用的文本编辑器介绍 • 命令行方式 vi/vim: 类UNIX操作系统中常用的内置编辑器,习惯操作后功能强大. pico或nano:一种风格很像Micros ...
- 几种常用单片机I/O口线的驱动能力
摘要: 详细分析了几种常见单片机的I/O口结构,并据此分析其驱动能力大小 在控制系统中,经常用单片机的I/O口驱动其他电路.几种常用单片机I/O口驱动能力在相关的资料中的说法是:GMS97C2051. ...
- Delphi使用XmlHttp获取时间
uses ComObj, DateUtils; procedure TForm1.Button1Click(Sender: TObject); var XmlHttp: Variant; datetx ...