HDU 5226 Tom and matrix(组合数学+Lucas定理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5226
题意:给一个矩阵a,a[i][j] = C(i,j)(i>=j) or 0(i < j),求(x1,y1),(x2,y2)这个子矩阵里面的所有数的和。
思路:首先可以推导出一个公式C(n,i)+C(n + 1,i)+...+C(m,i) = C(m + 1,i + 1)
知道了这个公式,就可以将子矩阵里每行(或每列)的和值表示成组合数的差值,现在的关键是求出C(n,m)(mod p).
由于n和m可能很大,p很小,不能直接求,要借助Lucas定理。关于Lucas定理,可参考:http://www.cnblogs.com/zxndgv/archive/2011/09/17/2179591.html。
code:
#include <cstdio>
typedef __int64 LL;
const int MAXN = ;
int p;
LL fac[MAXN]; // 得到阶乘 fac[i] = i! % p
void GetFact()
{
fac[] = ;
for (LL i = ; i < MAXN; ++i)
fac[i] = fac[i - ] * i % p;
} // 快速模幂 a^b % p
LL Pow(LL a, LL b)
{
LL temp = a % p;
LL ret = ;
while (b)
{
if (b & ) ret = ret * temp % p;
temp = temp * temp % p;
b >>= ;
}
return ret;
} /*
欧拉定理求逆元
(a / b) (mod p) = (a * x) (mod p) x表示b的逆元 并且 b * x = 1 (mod p) 只有b和p互质才存在逆元 b * x = 1 (mod p) x是b关于p的逆元 b^phi(p) = 1 (mod p) b * b^(phi(p) - 1) (mod p) = b * x (mod p) x = b^(phi(p) - 1) = b^(p - 2) (a / b) (mod p) = (a * x) (mod p) = (a * b^(p - 2)) (mod p) 经过上面的推导,得出: (a / b) (mod p) = (a * b^(p - 2)) (mod p) (b 和 p互质) */
LL Cal(LL n, LL m)
{
if (m > n) return ;
return fac[n] * Pow(fac[m] * fac[n - m], p - ) % p;
} LL Lucas(LL n, LL m)
{
if (m == ) return ;
return Cal(n % p, m % p) * Lucas(n / p, m / p) % p;
} int main()
{
int x1, y1, x2, y2;
while (scanf("%d %d %d %d %d", &x1, &y1, &x2, &y2, &p) == )
{
if (x2 < y1) // 预判 子矩阵全部0值区域
{
printf("0\n");
continue;
}
if (x2 == y1) // 预判 子矩阵只有右上角值为1,其余为0
{
printf("1\n");
continue;
}
GetFact();
if (x1 < y1) x1 = y1;
if (y2 > x2) y2 = x2;
LL ans = ;
for (int i = y1; i <= y2; ++i)
{
if (i > x1)
ans = (ans + Lucas(x2 + , i + )) % p;
else
ans = (ans + Lucas(x2 + , i + ) - Lucas(x1 + , i + ) + Lucas(x1, i)) % p;
}
printf("%I64d\n", ans);
}
return ;
}
HDU 5226 Tom and matrix(组合数学+Lucas定理)的更多相关文章
- 组合数(Lucas定理) + 快速幂 --- HDU 5226 Tom and matrix
Tom and matrix Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analy ...
- HDU 4349 Xiao Ming's Hope lucas定理
Xiao Ming's Hope Time Limit:1000MS Memory Limit:32768KB Description Xiao Ming likes counting nu ...
- hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)
DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...
- HDU 3304 Interesting Yang Yui Triangle lucas定理
输入p n 求杨辉三角的第n+1行不能被p整除的数有多少个 Lucas定理: A.B是非负整数,p是质数.AB写成p进制:A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0] ...
- HDU 4349 Xiao Ming's Hope [Lucas定理 二进制]
这种题面真是够了......@小明 题意:the number of odd numbers of C(n,0),C(n,1),C(n,2)...C(n,n). 奇数...就是mod 2=1啊 用Lu ...
- HDU 3037 Saving Beans (数论,Lucas定理)
题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法. 析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m). 然后 ...
- lucas 定理学习
大致意思就是求组合数C(n , m) % p的值, p为一个偶数 可以将组合数的n 和 m都理解为 p 进制的表示 n = ak*p^k + a(k-1)*p^(k-1) + ... + a1*p ...
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
- Bzoj 4403: 序列统计 Lucas定理,组合数学,数论
4403: 序列统计 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 328 Solved: 162[Submit][Status][Discuss] ...
随机推荐
- 接口返回json
use Mojolicious::Lite; use JSON qw/encode_json decode_json/; # /foo?user=sri get '/api' => sub { ...
- Java HashSet和LinkedHashSet的用法
Java HashSet和LinkedHashSet的用法 类HashSet和LinkedHashSet都是接口Set的实现,两者都不能保存重复的数据.主要区别是HashSet不保证集合中元素的顺序, ...
- 传智播客C/C++学院年薪24-50万招聘C/C++讲师
C/C++技术讲师 6名 (北京,年薪:24-50万) 传智播客C/C++课程培训体系如下: 1.C语言,世界五百强C语言面试训练 2.C++语言,世界五百强C++语言面试训练 3.数据结构与算法,世 ...
- app.listen(3000)与app是不一样的
前者是server代码如下 Server { domain: null, _events: { request: { [Function] domain: undefined, _events: [O ...
- Baskets of Gold Coins
Baskets of Gold Coins Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- 神器之“c#反编译工具“
1. ".net reflector"本人正在使用,下载地址 2."ILSpy"没实用过,可是听杨中科老师说挺好. 有了这个,妈妈再也不用操心我看不到别人封装好 ...
- HDOJ 1561 - 树形DP,泛化背包
刚看题...觉得这不是棵树...可能有回路...仔细一想..这还真是棵树(森林)...这是由于每个城堡所需要提前击破的城堡至多一个..对于一个城堡.其所需提前击破的城堡作为其父亲构图.... dp[k ...
- C++ ofstream和ifstream
ofstream是从内存到硬盘,ifstream是从硬盘到内存,其实所谓的流缓冲就是内存空间; 在C++中,有一个stream这个类,所有的I/O都以这个“流”类为基础的,包括我们要认识的文件I/O, ...
- AngularJs(一) MVC 模式的应用
Model的应用 MVC的模式大家都是十分熟悉了,那么Angular是怎么规划的呢.数据被放在json文件中,通过Ajax获取数据. [{ "action": "Buy ...
- Java通过JDBC链接数据库,数据库中wen
连接数据库设置编码 jdbc:mysql://地址:3306/数据库名?characterEncoding=utf8